【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)經(jīng)過點A(1,0)和點B(0,﹣2),且頂點在第三象限,記m=a﹣b+c,則m的取值范圍是( 。
![]()
A. ﹣1<m<0B. ﹣2<m<0C. ﹣4<m<﹣2D. ﹣4<m<0
【答案】D
【解析】
求出a>0,b>0,把x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+c=2a﹣4,求出2a﹣4的范圍即可.
解:∵二次函數(shù)的圖象開口向上,
∴a>0,
∵對稱軸在y軸的左邊,
∴
<0,
∴b>0,
∵圖象與y軸的交點坐標(biāo)是(0,﹣2),過(1,0)點,
代入得:a+b﹣2=0,
∴a=2﹣b,b=2﹣a,
∴y=ax2+(2﹣a)x﹣2,
當(dāng)x=﹣1時,y=a﹣b+c=a﹣(2﹣a)﹣2=2a﹣4,
∵b>0,
∴b=2﹣a>0,
∴a<2,
∵a>0,
∴0<a<2,
∴0<2a<4,
∴﹣4<2a﹣4<0,
∵y=a﹣b+c=a﹣(2﹣a)﹣2=2a﹣4,
∴﹣4<a﹣b+c<0,
即﹣4<m<0.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+
x+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,
,
,點
是
的中點,點
是邊
上一動點,沿
所在直線把
翻折到
的位置,若線段
交
于點
,且
為直角三角形,則
的長為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班開展安全知識競賽活動,班長將所有同學(xué)的成績(得分為整數(shù),滿分為100分)分成四類,并制作了如下的統(tǒng)計圖表:
類別 | 成績 | 頻數(shù) |
甲 | 60≤m<70 | 5 |
乙 | 70≤m<80 | a |
丙 | 80≤m<90 | 10 |
丁 | 90≤m≤100 | 5 |
![]()
根據(jù)圖表信息,回答下列問題:
(1)該班共有學(xué)生________人;表中a=________;
(2)將丁類的五名學(xué)生分別記為A、B、C、D、E,現(xiàn)從中隨機挑選兩名學(xué)生參加學(xué)校的決賽,請借助樹狀圖、列表或其他方式求B一定能參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(
≈1.732,結(jié)果精確到0.1m).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關(guān)系,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=
x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當(dāng)A1B1與半圓O相切于點D時,平移的距離的長為_____.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com