【題目】使得關(guān)于x的分式方程
﹣2=
有正整數(shù)解,且關(guān)于x的不等式組
至少有4個整數(shù)解,那么符合條件的所有整數(shù)a的和為( 。
A.﹣20B.﹣17C.﹣9D.﹣5
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以斜邊AB為直徑作Rt△ABC的外接圓,圓心為O,P為弧BC的中點(diǎn).
(1)只用直尺和筆作圖:在弧ACB另一側(cè)的圓上找一點(diǎn)G,連接PG交BC于點(diǎn)D,使D成為BC中點(diǎn).并說明你的理由.
(2)在(1)小題圖形基礎(chǔ)上,在DG上取一點(diǎn)K,使DK=DP,連接CK、BK,判斷四邊形PBKC的形狀,并證明你的結(jié)論.
(3)如題圖2,取CP的中點(diǎn)E,連接ED并延長ED交AB于點(diǎn)H,連接PH,求證:當(dāng)∠CAB=60°時(shí),H為AB四等分點(diǎn).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師提出了這樣一個問題:如圖,己知
.求作:過
三點(diǎn)的圓.
小蕓是這樣思考的:圓心確定一個圈的位置,半徑確定一個圓的大小要作同時(shí)經(jīng)過幾個定點(diǎn)的圓,就是要先找到一個點(diǎn),使得這個點(diǎn)到這幾個定點(diǎn)的距離都相等.這樣既定了圓心,又定了半徑,就能畫出滿足條件的圓了.
小智聽了小蕓的分析后,按照這個思路很快就畫出了一個過
三點(diǎn)的圓.
請你在答題紙上而出這個圓,并寫出作圖的主要依據(jù),
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某養(yǎng)殖場在養(yǎng)殖面積擴(kuò)建中,準(zhǔn)備將總長為
米的籬笆圍成 矩形
形狀的雞舍,其中
一邊利用現(xiàn)有的一段足夠長的圍墻,其余三邊 用籬笆,且在與墻平行的一邊
上開一個
米寬的門
.設(shè)
邊長為
米, 雞舍面積為
平方米.
求出
與
的函數(shù)關(guān)系式;(不需寫自變量的取值范圍).
當(dāng)雞舍的面積為
平方米時(shí),求出雞舍的一邊
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,
為等腰三角形,
是底邊
的中點(diǎn),腰
與
相切于點(diǎn)
,底
交
于點(diǎn)
,
.
![]()
![]()
(1)求證:
是
的切線;
(2)如圖2,連接
,
交
于點(diǎn)
,點(diǎn)
是弧
的中點(diǎn),若
,
,求
的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,連接對角線BD,AB=BD,E為線段AD上一點(diǎn),AE=BE,F為射線BE上一點(diǎn),DE=BF,連接AF.
(1)如圖1,若∠BED=60°,CD=2
,求EF的長;
(2)如圖2,連接DF并延長交AB于點(diǎn)G,若AF=2DE,求證:DF=2GF.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)
的圖象與正比例函數(shù)
的圖象相交于
(1,
),
兩點(diǎn),點(diǎn)
在第四象限,
∥
軸,
.
(1)求
的值及點(diǎn)
的坐標(biāo);
(2)求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的網(wǎng)格中,每一個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn),以O為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.若拋物線y=x2+bx+c的圖象至少經(jīng)過圖中(4×4的網(wǎng)格中)的三個格點(diǎn),并且至少一個格點(diǎn)在x軸上,則符合要求的拋物線一定不經(jīng)過的格點(diǎn)坐標(biāo)為( )
![]()
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長CB、DA交于P,過C點(diǎn)作PD的垂線交PD的延長線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com