解:(1)如圖2,AE=EF,理由為:

證明:在AB上截取AM=EC,連接ME,
∵AM=EC,AB=BC,
∴AB-AM=BC-EC,即BM=BE,
∴△MBE為等腰直角三角形,
∴∠BME=45°,
∵CF為直角∠DCG的平分線,∠AME為∠BME的外角,∠ECF為∠FCG的外角,
∴∠AME=∠ECF=135°,
∵∠AEF=90°,
∴∠FEC+∠AEB=90°,
又∵∠EAM+∠AEB=90°,
∴∠EAM=∠FEC,
在△AEM和△EFC中,

,
∴△AEM≌△EFC(ASA),
∴AE=EF;
(3)如圖3:AE=EF,理由為:
證明:延長AB到M,使AM=CE,連接ME,
∵AM=CE,AB=BC,
∴AM-AB=CE-BC,即BM=BE,
∴∠BME=45°,
∴∠BME=∠ECF=45°,
又∠AEF=∠ABE=90°,
∴∠MAE+∠AEB=90°,∠CEF+∠AEB=90°,
∴∠MAE=∠CEF,
在△MAE和△CEF中,

,
∴△MAE≌△CEF(ASA),
∴AE=EF.
分析:(1)在AB上截取AM=EC,然后證明∠EAM=FEC,∠AME=∠ECF=135°,再利用“角邊角”證明△AEM和△EFC全等,然后根據(jù)全等三角形對應邊相等即可證明;
(2)延長AB到M,使AM=CE,然后證明∠BME=45°,從而得到∠BME=∠ECF,再利用兩直線平行,內錯角相等證明∠DAE=∠BEA,然后得到∠MAE=∠CEF,再利用“角邊角”證明△MAE和△CEF全等,根據(jù)全等三角形對應邊相等即可得證.
點評:本題考查了正方形的性質,全等三角形的判定與性質,閱讀材料,理清解題的關鍵是取AM=EC,然后構造出△AEM與△EFC全等是解題的關鍵.