【題目】已知:菱形ABCD的兩條對角線AC,BD交于點(diǎn)O,BE∥AC,CE∥BD. ![]()
(1)若AC=8,BD=6,求AB的長;
(2)求證:四邊形OBEC為矩形.
【答案】
(1)解:∵四邊形ABCD是菱形,
∴AC⊥BD,AO=
AC,BO=
BD,
∵AC=8,BD=6,
∴AO=4,BO=3,
∴AB=
=5
(2)證明:∵BE∥AC,CE∥BD,
∴四邊形OCBD為平行四邊形,
∵∠BOC=90°,
∴四邊形OBCE為矩形
【解析】(1)利用菱形對角線互相垂直平分和勾股定理計算可得AB的長;(2)易證四邊形OCBD是平行四邊形,再由∠BOC=90°,即可證明四邊形OBEC為矩形
【考點(diǎn)精析】認(rèn)真審題,首先需要了解菱形的性質(zhì)(菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半),還要掌握矩形的判定方法(有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形)的相關(guān)知識才是答題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.概率很小的事件不可能發(fā)生
B.隨機(jī)事件發(fā)生的概率為1
C.不可能事件發(fā)生的概率為0
D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)________,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或________,這個點(diǎn)叫做它們的________.這兩個圖形在旋轉(zhuǎn)后能重合的對應(yīng)點(diǎn)叫做關(guān)于對稱中心的________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運(yùn)算:對于任意有理數(shù)a和b , 規(guī)定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若(
☆3)☆(﹣
)=8,求a的值;
(3)若2☆x=m , (
x)☆3=n(其中x為有理數(shù)),試比較m , n的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對稱,則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(k>0).
(1)當(dāng)k=
時,求這個二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求證:關(guān)于x的一元次方程
有兩個不相等的實(shí)數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于C點(diǎn),P是y軸負(fù)半軸上一點(diǎn),且OP=1,直線AP交BC于點(diǎn)Q,求證:
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)
的圖象與反比例函數(shù)
(
為常數(shù),且
)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接春節(jié),某縣準(zhǔn)備用燈籠美化濱河路,許采用A、B兩種不同造型的燈籠共600個.且A型燈籠的數(shù)量比B型燈籠的
多15個.
(1)求A、B兩種燈籠各需多少個?
(2)已知A、B型燈籠的單價分別為40元、30元,則這次美化工程需多少費(fèi)用?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com