【題目】如圖,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,tan∠ACD=
,AB=5,那么CD的長(zhǎng)是_____.
![]()
【答案】2.4
【解析】根據(jù)余角的性質(zhì)得到∠B=∠ACD,由tan∠ACD=
,得到tan∠B=
=
,設(shè)AC=3x,BC=4x,根據(jù)勾股定理得到AC=3,BC=4,根據(jù)三角形面積的公式即可得到結(jié)論.
解:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=∠BCD+∠B=90°,
∴∠B=∠ACD,
∵tan∠ACD=
,
∴tan∠B=
=
,
設(shè)AC=3x,BC=4x,
∵AC2+BC2=AB2,
∴(3x)2+(4x)2=52,
解得x=1,
∴AC=3,BC=4,
∵S△ABC=
AB×CD=
AC×BC,
∴CD=
=2.4,
故答案為:2.4.
“點(diǎn)睛”本題考查了解直角三角形,勾股定理,三角形的面積公式,熟記三角形的面積公式是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅每分鐘踢毽子的次數(shù)正常范圍為少于80次,但不少于50次,用不等式表示為( )
A. 50<x<80; B. 50≤x≤80; C. 50≤x<80; D. 50<x≤80;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】變形與求值
(1)通分:
,
.
(2)求值:
,其中x=1,y=﹣
.
(3)不改變分式的值,變形使分式
的分子與分母的最高次項(xiàng)的系數(shù)是正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=4(x﹣3)2+7,開(kāi)口_____,對(duì)稱(chēng)軸為_____,頂點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畢達(dá)哥拉斯學(xué)派對(duì)”數(shù)”與”形”的巧妙結(jié)合作了如下研究:
名稱(chēng)及圖形 | 三角形數(shù) | 正方形數(shù) | 五邊形數(shù) | 六邊形數(shù) |
|
|
|
| |
第一層幾何點(diǎn)數(shù) | 1 | 1 | 1 | 1 |
第二層幾何點(diǎn)數(shù) | 2 | 3 | 4 | 5 |
第三層幾何點(diǎn)數(shù) | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六層幾何點(diǎn)數(shù) | ||||
… | … | … | … | … |
第n層幾何點(diǎn)數(shù) |
請(qǐng)寫(xiě)出第六層各個(gè)圖形的幾何點(diǎn)數(shù),并歸納出第n層各個(gè)圖形的幾何點(diǎn)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上.圓心在P(a,b),半徑為r的圓的方程可以寫(xiě)為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.
![]()
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心,
為半徑的圓的方程為:________;
(2)根據(jù)以上材料解決以下問(wèn)題:
如圖2,以B(-6,0)為圓心的圓與y軸相切于原點(diǎn),C是☉B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC=
.
①連接EC,證明EC是☉B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO,若存在,求P點(diǎn)坐標(biāo),并寫(xiě)出以P為圓心,以PB為半徑的☉P的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
![]()
(1)求拋物線的解析式a,b,c;
(2)線段AB上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點(diǎn)M坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列
個(gè)命題:其中真命題是( ).
⑴三角形的外角和是
;⑵三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;⑶直角三角形兩銳角互余;⑷相等的角是對(duì)頂角.
A.(
)(
)
B.(
)(
)
C.(
)(
)
D.(
)(
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面內(nèi),∠AOB=60°,OD是∠AOB的角平分線,∠BOC=20°,則∠COD的度數(shù)是 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com