【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,經(jīng)過(guò)A,D兩點(diǎn)的圓的圓心F恰好在y軸上,⊙F與邊BC相切于點(diǎn)E,與x軸交于點(diǎn)M,與y軸相交于另一點(diǎn)G,連接AE.
(1)求證:AE平分∠BAC;
(2)若點(diǎn)A,D的坐標(biāo)分別為(0,﹣1),(2,0),求⊙F的半徑;
(3)求經(jīng)過(guò)三點(diǎn)M,F,D的拋物線(xiàn)的解析式.
![]()
【答案】(1)詳見(jiàn)解析;(2)⊙F的半徑為
;(3)y=﹣
x2+
.
【解析】
(1)連接FE,先根據(jù)切線(xiàn)的性質(zhì)知∠FEC=90°,結(jié)合∠C=90°證FE∥AC得∠EAC=∠FEA,根據(jù)FA=FE知∠FAE=∠FEA,從而得∠FAE=∠CAE,即可得證;
(2)連接FD,設(shè)⊙F的半徑為r,根據(jù)FD2=(AF﹣AO)2+OD2知r2=(r﹣1)2+22,解之可得;
(3)根據(jù)圓的對(duì)稱(chēng)性得出點(diǎn)M的坐標(biāo),設(shè)拋物線(xiàn)的交點(diǎn)式,將點(diǎn)F坐標(biāo)代入計(jì)算可得.
(1)連接FE,
∵⊙F與邊BC相切于點(diǎn)E,
∴∠FEC=90°,
∵∠ACB=90°,
∴∠FEC+∠ACB=180°,
∴FE∥AC,
∴∠EAC=∠FEA,
∵FA=FE,
∴∠FAE=∠FEA,
∴∠FAE=∠CAE,
∴AE平分∠BAC;
(2)連接FD,
設(shè)⊙F的半徑為r,
∵A(0,﹣1),D(2,0),
∴OA=1,OD=2,
在Rt△FOD中,FD2=(AF﹣AO)2+OD2,
∴r2=(r﹣1)2+22,
解得:r=
,
∴⊙F的半徑為
;
![]()
(3)∵FA=r=
,OA=1,FO=
,
∴F(0,
),
∵直徑AG垂直平分弦MD,點(diǎn)M和點(diǎn)D(2,0)關(guān)于y軸對(duì)稱(chēng)軸,
∴M(﹣2,0),
設(shè)拋物線(xiàn)解析式為y=a(x+2)(x﹣2),
將點(diǎn)F(0,
)代入,得:﹣4a=
,
解得:a=﹣
,
則拋物線(xiàn)解析式為y=﹣
(x+2)(x﹣2)=﹣
x2+
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F分別在邊AB,BC上,且AE=
AB,將矩形沿直線(xiàn)EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
![]()
A. ①② B. ②③ C. ①③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OC⊥弦AB于點(diǎn)D,點(diǎn)E為優(yōu)弧AB上一點(diǎn),連接AE、BE、AC,過(guò)點(diǎn)C的直線(xiàn)與EA延長(zhǎng)線(xiàn)交于點(diǎn)F,且∠ACF=
∠AEB.
(1)求證:CF與⊙O相切;
(2)若∠AEB=60°,AB=4
,求⊙O的半徑;
(3)在(2)的條件下,若AE=4
,求EC的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( 。
A. 設(shè)
為單位向量,那么![]()
B. 已知
、
、
都是非零向量,如果
,
,那么![]()
C. 四邊形
中,如果滿(mǎn)足
,
,那么這個(gè)四邊形一定是平行四邊形
D. 平面內(nèi)任意一個(gè)非零向量都可以在給定的兩個(gè)不平行向量的方向上分解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
中,
,
,
,以點(diǎn)
為圓心,以任意長(zhǎng)為半徑作弧,分別交
于點(diǎn)M,N,再分別以M,N為圓心,以大于
的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)
,作射線(xiàn)
交
于點(diǎn)
,則
的長(zhǎng)是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿(mǎn)足關(guān)系式y=a(x
k)2+h.已知球與O點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
![]()
A. 球不會(huì)過(guò)網(wǎng) B. 球會(huì)過(guò)球網(wǎng)但不會(huì)出界
C. 球會(huì)過(guò)球網(wǎng)并會(huì)出界 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線(xiàn)AP,點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,其中DE交直線(xiàn)AP于點(diǎn)F.
(1)依題意補(bǔ)全圖1.
(2)若∠PAB=30°,求∠ADF的度數(shù).
(3)如圖,若45°<∠PAB<90°,用等式表示線(xiàn)段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=30°,P是∠AOB平分線(xiàn)上一點(diǎn),CP∥OB,交OA于點(diǎn)C,PD⊥OB,垂足為點(diǎn)D,且PC=8,則PD的長(zhǎng)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線(xiàn)段NB的中點(diǎn),求證:直線(xiàn)CD是⊙M的切線(xiàn).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com