分析 (1)先證出∠ACD=∠BCE,那么△ACD≌△BCE,根據(jù)全等三角形證出AD=BE;
(2)由(1)證得△ACD≌△BCE,得到∠ADC=∠BEC通過等量代換得到∠DCB=∠EBC,有內(nèi)錯(cuò)角相等得到CD∥BE;
(3)證明△ACD≌△BCE,得出∠ADC=∠BEC,由△DCE為等腰直角三角形,得到∠CDE=∠CED=45°,因?yàn)辄c(diǎn)A,D,E在同一直線上,得到∠ADC=135°,∠BEC=135°,于是得到∠AEB=∠BEC-∠CED=90°.
解答 解:(1)∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°-∠CDB=∠BCE,
在△ACD和△BCE中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
(2)由(1)證得△ACD≌△BCE,
∴∠ADC=∠BEC,∵∠CDE=60°,
∴∠ADC=∠BEC=120°,
∵∠DCB=60°-∠BCE,∠CBE=180°-∠BEC-∠ECB=60°-∠ECB,
∴∠DCB=∠EBC,
∴CD∥BE;
(3))∠AEB=90°,AE=BE+2CM.
理由:∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,$\left\{\begin{array}{l}{CA=CB}\\{∠AC∠BCE}\\{CD=CE}\end{array}\right.$
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°.
點(diǎn)評 此題考查了全等三角形的判定與性質(zhì)和等腰三角形的判定與性質(zhì)以及等腰三角形的性質(zhì);證明三角形全等是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≥2 | B. | x<3 | C. | 2≤x<3 | D. | x>3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2015 | B. | 2015 | C. | $\frac{1}{2015}$ | D. | -$\frac{1}{2015}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com