分析 要求登梯的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線(xiàn)段最短”得出結(jié)果,在求線(xiàn)段長(zhǎng)時(shí),借助于勾股定理.
解答 解:將圓柱表面切開(kāi)展開(kāi)呈長(zhǎng)方形,
∵圓柱高16m,底面周長(zhǎng)8m,
∴x2=(1×8+4)2+162=400,
∴登梯至少$\sqrt{400}$=20(米).
點(diǎn)評(píng) 本題考查了勾股定理的應(yīng)用.圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題就是把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”,用勾股定理解決.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1-b+c=0 | B. | 1+b+c=0 | C. | 1+b-c=0 | D. | 1-b-c=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com