科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,
,頂點C的坐標為
,x反比例函數(shù)
的圖象與菱形對角線AO交于點D,連接BD,當
軸時,k的值是______.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿
運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是
,設(shè)P,Q出發(fā)t秒時,
的面積為
,已知y與t的函數(shù)關(guān)系的圖象如圖
曲線OM為拋物線的一部分
,則下列結(jié)論:
;
直線NH的解析式為
;
不可能與
相似;
當
時,
秒.其中正確的結(jié)論個數(shù)是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:點P是△ABC內(nèi)部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P為△ABC的自相似點.
請你運用所學知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標系中,點M是曲線C:![]()
上的任意一點,點N是x軸正半軸上的任意一點.
(1) 如圖2,點P是OM上一點,∠ONP=∠M, 試說明點P是△MON的自相似點; 當點M的坐標是
,點N的坐標是
時,求點P 的坐標;
(2) 如圖3,當點M的坐標是
,點N的坐標是
時,求△MON的自相似點的坐標;
(3) 是否存在點M和點N,使△MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.
![]()
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】小明研究了這樣一道幾何題:如圖1,在
中,把
繞點
順時針旋轉(zhuǎn)
得到
,把
繞點
逆時針旋轉(zhuǎn)
得到
,連接
.當
時,請問
邊
上的中線
與
的數(shù)量關(guān)系是什么?以下是他的研究過程:
![]()
特例驗證:(1)①如圖2,當
為等邊三角形時,猜想
與
的數(shù)量關(guān)系為
_______
;②如圖3,當
,
時,則
長為________.
猜想論證:(2)在圖1中,當
為任意三角形時,猜想
與
的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用:(3)如圖4,在四邊形
,
,
,
,
,
,在四邊形內(nèi)部是否存在點
,使
與
之間滿足小明探究的問題中的邊角關(guān)系?若存在,請畫出點
的位置(保留作圖痕跡,不需要說明)并直接寫出
的邊
上的中線
的長度;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線
(m,n 為常數(shù)).
(1)若拋物線的的對稱軸為直線 x=1,且經(jīng)過點(0,-1),求 m,n 的值;
(2)若拋物線上始終存在不重合的兩點關(guān)于原點對稱,求 n 的取值范圍;
(3)在(1)的條件下,存在正實數(shù) a,b( a<b),當 a≤x≤b 時,恰好有
,請直接寫出 a,b 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù) y=f(x)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),則稱 f(x)是增函數(shù);
(2)若 x1<x2,都有 f(x1)>f(x2),則稱 f(x)是減函數(shù).
例題:證明函數(shù)f(x)=
(x>0)是減函數(shù).
證明:設(shè) 0<x1<x2,
f(x1)﹣f(x2)=
.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴
>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函數(shù) f(x)=
(x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
已知函數(shù)
.
f(﹣1)=
+(﹣2)=-1,f(﹣2)=
+(﹣4)=
.
(1)計算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函數(shù)
是 函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于O點,DE∥AC,CE∥BD.
![]()
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反比例函數(shù)
的圖象與正比例函數(shù)
的圖象相交于
(1,
),
兩點,點
在第四象限,
∥
軸,
.
(1)求
的值及點
的坐標;
(2)求
的值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC 中,R 和 r 分別為外接圓和內(nèi)切圓的半徑,O 和 I 分別為其外心和內(nèi)心,則OI
R
2Rr .
![]()
下面是該定理的證明過程(借助了第(2)問的結(jié)論):
延長AI 交⊙O 于點 D,過點 I 作⊙O 的直徑 MN,連接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI.∴
,∴ IA ID IM IN ①
如圖②,在圖 1(隱去 MD,AN)的基礎(chǔ)上作⊙O 的直徑DE,連接BE,BD,BI,IF
∵DE 是⊙O 的直徑,∴∠DBE=90°.
∵⊙I 與 AB 相切于點 F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB.
∴
,∴
②,
由(2)知:
,
∴![]()
又∵
,
∴ 2Rr(R d )(R d ) ,
∴ R
d
2Rr
∴ d
R
2Rr
任務(wù):(1)觀察發(fā)現(xiàn): IM R d , IN (用含R,d 的代數(shù)式表示);
(2)請判斷 BD 和 ID 的數(shù)量關(guān)系,并說明理由.(請利用圖 1 證明)
(3)應(yīng)用:若△ABC 的外接圓的半徑為 6cm,內(nèi)切圓的半徑為 2cm,則△ABC 的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com