科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)
的圖象交
軸于
,
兩點,交
軸于點
,其中
.
(1)求點
的坐標(biāo),并用含
的式子表示
;
(2)連接
,
,當(dāng)
為銳角時,求
的取值范圍;
(3)若
為
軸上一個動點,連接
,當(dāng)點
的坐標(biāo)為
時,直接寫出
的最小值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】復(fù)課返校后,為了拉大學(xué)生鍛煉的間距,學(xué)校決定增購適合獨立訓(xùn)練的兩種體育器材:跳繩和毽子.如果購進5根跳繩和6個毽子共需196元;購進2根跳繩和5個鍵子共需120元.
(1)求一根跳繩和一個毽子的售價分別是多少元;
(2)學(xué)校計劃購買跳繩和鍵子兩種器材共400個,由于受疫情影響,商場決定對這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學(xué)校要求跳繩的數(shù)量不少于毽子數(shù)量的3倍,跳繩的數(shù)量不多于310根,請你求出學(xué);ㄥX最少的購買方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】復(fù)課返校后,為了讓同學(xué)們進一步了解“新型冠狀病毒”的防控知識,某學(xué)校組織了一次關(guān)于“新型冠狀病毒”的防控知識比賽,從問卷中隨機抽查了一部分,對調(diào)查結(jié)果進行了分組統(tǒng)計,并制作了如下表格與條形統(tǒng)計圖:
分組結(jié)果 | 頻數(shù) | 頻率 |
A.完全掌握 | 30 | 0.3 |
B.比較清楚 | 50 |
|
C.不怎么清楚 |
| 0.15 |
D.不清楚 | 5 | 0.05 |
![]()
請根據(jù)上圖完成下面題目:
(1)總?cè)藬?shù)為 人,
,
;
(2)請你補全條形統(tǒng)計圖;
(3)若全校有2700人,請你估算一下全校對“新型冠狀病毒”的防控知識“完全掌握”的人數(shù)有多少.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把一塊含30°角的三角板的直角頂點放在反比例函數(shù)y=-
(x<0)的圖象上的點C處,另兩個頂點分別落在原點O和x軸的負(fù)半軸上的點A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點D的坐標(biāo)為__________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個不透明的袋子里裝有獨立包裝的口罩,其中粉色口罩有3個、藍色口罩有2個,這些口罩除了顏色外全部相同,從中隨機依次不放回拿出兩個口罩,則兩個口罩都是粉色的概率是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形
中,
的頂點
,
分別在
,
邊上,高
與正方形的邊長相等,連接
分別交
,
于點
,
,下列說法:①
;②連接
,
,則
為直角三角形;③
;④若
,
,則
的長為
,其中正確結(jié)論的個數(shù)是( )
![]()
A.4B.3C.2D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,兩個三角形紙板
,
能完全重合,
,
,
,將
繞點
從重合位置開始,按逆時針方向旋轉(zhuǎn),邊
,
分別與
,
交于點
,
(點
不與點
,
重合),點
是
的內(nèi)心,若
,點
運動的路徑為
,則圖中陰影部分的面積為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點P在對角線AC上(點P與A、C不重合),QP與BC交于E,QP延長線與AD交于點F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.
(1)求該拋物線的函數(shù)解析式;
(2)已知直線
的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當(dāng)m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線
于點H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時,過點P分別作x軸、直線
的垂線,垂足為點E,F(xiàn).是否在線段BC存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E為OC上動點(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OB于F、H,連接OG、CG.
(1)求證:AH=BE;
(2)∠AGO的度數(shù)是否為定值?說明理由;
(3)若∠OGC=90°,BG=
,求△OGC的面積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com