科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,連結(jié)OA、OB、OC,延長BO與AC交于點D,與⊙O交于點F,延長BA到點G,使得∠BGF=∠GBC,連接FG.
![]()
(1)求證:FG是⊙O的切線;
(2)若⊙O的半徑為6.
①當(dāng)OD=4,求AD的長度;
②當(dāng)△OCD是直角三角形時,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”:如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.解決問題:
(1)如圖1,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB與BC的數(shù)量關(guān)系.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經(jīng)過點C,且圓的直徑AB在線段AE上.點D是線段AC上任意一點(不含端點),連接OD,當(dāng)AB=4時,則
CD+OD的最小值是______.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應(yīng)).若AB=1,反比例函數(shù)y=
(k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為______.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(0,4),C為OB上任意一點,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△A′B′C′.若反比例函數(shù)y=
的圖象恰好經(jīng)過A′B的中點D,則k=____.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線l的表達式為y=x,點A1的坐標(biāo)為(1,0),以O(shè)為圓心,OA1為半徑畫弧,與直線l交于點C1,記
長為m1;過點A1作A1B1垂直x軸,交直線l于點B1,以O(shè)為圓心,OB1為半徑畫弧,交x軸于C2,記
的長為m2;過點B1作A2B1垂直l,交x軸于點A2,以O(shè)為圓心,OA2為半徑畫弧,交直線l于C3,記
的長為m3…按照這樣規(guī)律進行下去,mn的長為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,BC=5,E,F分別是AB,AC的中點,動點P在射線EF上,BP交CE于點D,∠CBP的平分線交CE于點Q,當(dāng)CQ=
CE時,EP+BP的值為( )
![]()
A.10B.8C.6D.5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y的正半軸交于點C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標(biāo)為_____,點A的坐標(biāo)為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A在x軸負半軸上,點B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=
.
![]()
(1)求點A的坐標(biāo);
(2)點E在y軸負半軸上,直線EC交線段AB于點C,交x軸于點D.若C點坐標(biāo)為(-6.m),求:直線AB的表達式和經(jīng)過點C得反比例函數(shù)表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠要加工甲、乙、丙三種型號機械配件共120個,安排20個工人剛好一天加工完成,每人只加工一種配件,設(shè)加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,根據(jù)下表提供的信息,解答下列問題:
配件種類 | 甲 | 乙 | 丙 |
每人每天加工配件的數(shù)量 | 8 | 6 | 5 |
每個配件獲利 | 15 | 14 | 8 |
求y與x之間的關(guān)系.
若這些機械配件共獲利1420元,請求出加工甲、乙、丙三種型號配件的人數(shù)分別是多少人?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com