在橢圓
上找一點,使這一點到直線
的距離為最小,并求最小值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線
的方程為
,以極點為原點,極軸方向為
正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線
的直角坐標(biāo)方程以及曲線
的普通方程;
(2)設(shè)點
為曲線
上的動點,過點
作曲線
的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的上頂點為
,左焦點為
,直線
與圓
相切.過點
的直線與橢圓
交于
兩點.
(I)求橢圓
的方程;
(II)當(dāng)
的面積達(dá)到最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
的漸近線方程為
,左焦點為F,過
的直線為
,原點到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點C,D,問是否存在實數(shù)
,使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的左、右焦點分別為
,
上頂點為
,在
軸負(fù)半軸上有一點
,滿足
,且
.![]()
(Ⅰ)求橢圓
的離心率;
(Ⅱ)
是過
三點的圓上的點,
到直線
的最大距離等于橢圓長軸的長,求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點
作斜率為
的直線
與橢圓
交于
兩點,線段
的中垂線與
軸相交于點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.![]()
(Ⅰ)求證:
,
,
三點的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左右焦點為
,拋物線C:
以F2為焦點且與橢圓相交于點
、![]()
,點
在
軸上方,直線
與拋物線
相切.
(1)求拋物線
的方程和點
、
的坐標(biāo);
(2)設(shè)A,B是拋物線C上兩動點,如果直線
,
與
軸分別交于點
.
是以
,
為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的右焦點
,過原點和
軸不重合的直線與橢圓
相交于
,
兩點,且
,
最小值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若圓:
的切線
與橢圓
相交于
,
兩點,當(dāng)
,
兩點橫坐標(biāo)不相等時,問:
與
是否垂直?若垂直,請給出證明;若不垂直,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點,兩個焦點分別為
,![]()
,點
在橢圓
上,過點
的直線
與拋物線
交于
兩點,拋物線
在點
處的切線分別為
,且
與
交于點
.
(1) 求橢圓
的方程;
(2) 是否存在滿足
的點
? 若存在,指出這樣的點
有幾個(不必求出點
的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com