【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于
,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.
B.
C.
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過(guò)100度時(shí),按每度0.57元計(jì)算;每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.5元計(jì)算.
(Ⅰ)設(shè)月用電
度時(shí),應(yīng)交電費(fèi)
元,寫(xiě)出
關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:
月份 | 一月 | 二月 | 三月 | 合計(jì) |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問(wèn)小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,點(diǎn)
在橢圓上,
為坐標(biāo)原點(diǎn).
(1)求橢圓
的方程;
(2)已知點(diǎn)
為橢圓
上的三點(diǎn),若四邊形
為平行四邊形,證明:四邊形
的面積
為定值,并求該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在
中,內(nèi)角
的對(duì)邊分別是
,已知
為銳角,且
.
(Ⅰ)求
的大小;
(Ⅱ)設(shè)函數(shù)
,其圖象上相鄰兩條對(duì)稱軸間的距離為
.將函數(shù)
的圖象向左平移
個(gè)單位,得到函數(shù)
的圖象,求函數(shù)
在區(qū)間
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐
的底面為直角梯形,
.點(diǎn)
是
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)已知平面
底面
,且
.在棱
上是否存在點(diǎn)
,使
?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體
中,
,
分別是
,
的中點(diǎn),
,
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)在線段
上是否存在一點(diǎn)
,使得二面角
為
,若存在,求
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值2,則空白判斷框中的條件可能為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)若
在
上存在極值點(diǎn),求
的取值范圍;
(2)設(shè)
,
,若
存在最大值,記為
,則當(dāng)
時(shí),
是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)
和溫度
是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒(méi)有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線性相關(guān)關(guān)系,現(xiàn)分別用模型①:
與模型②:
作為產(chǎn)卵數(shù)
和溫度
的回歸方程來(lái)建立兩個(gè)變量之間的關(guān)系.
溫度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
| 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
| 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中
, ![]()
,
,
附:對(duì)于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
![]()
(1)在答題卡中分別畫(huà)出
關(guān)于
的散點(diǎn)圖、
關(guān)于
的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類型?(給出判斷即可,不必說(shuō)明理由).
![]()
(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立
關(guān)于
的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為
時(shí)的產(chǎn)卵數(shù).(
與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):
,
,
)
(3)若模型①、②的相關(guān)指數(shù)計(jì)算得分分別為
,
,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com