【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305) ![]()
A.3.10
B.3.11
C.3.12
D.3.13
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)
為偶函數(shù).
(1)求
的解析式;
(2)若函數(shù)
在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進(jìn)智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)=
萬元.
(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?
(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量q(m)=
(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進(jìn)機器人后,日平均分揀量達(dá)最大值時,用人數(shù)量比引進(jìn)機器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點. ![]()
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP≤
,并指出P和Q滿足什么條件時有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為實數(shù).
(1)若曲線
在點
處的切線方程為
,試求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
,
,且
時,若恒有
,試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB=
EA=
ED,EF∥BD ![]()
(I)證明:AE⊥CD
(II)在棱ED上是否存在點M,使得直線AM與平面EFBD所成角的正弦值為
?若存在,確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·
是冪函數(shù),對任意x1,x2∈(0,+∞)且x1≠x2,滿足
,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無法判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上的點M(x0 , y0)到點N(2,0)距離的最小值為
.
(1)求拋物線C的方程;
(2)若x0>2,圓E(x﹣1)2+y2=1,過M作圓E的兩條切線分別交y軸A(0,a),B(0,b)兩點,求△MAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中xOy,直線C1的參數(shù)方程為
(t是參數(shù)).在以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρ=sinθ﹣cosθ(θ是參數(shù)).
(Ⅰ)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個動點,求點M到直線C1的距離的最大值和最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com