【題目】若關于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個實數(shù)根x1 , x2滿足x1≤0≤x2≤1,則a2+b2+4a的最小值和最大值分別為( )
A.
和5+4 ![]()
B.﹣
和5+4 ![]()
C.﹣
和12
D.﹣
和15﹣4 ![]()
【答案】B
【解析】解:令f(x)=x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1,函數(shù)開口向上,又關于的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個實數(shù)根x1 , x2滿足x1≤0≤x2≤1,
得
,即a2+b2+2a﹣4b+1≤0且a+b+1≥0
即(a+1)2+(b﹣2)2≤4且a+b+1≥0
表示以(﹣1,2)為圓心,半徑小于等于2的圓平面與a+b+1=0右上部分平面區(qū)域的重疊部分
又a2+b2+4a=(a+2)2+b2﹣4
只要在滿足條件區(qū)域中求點(a,b)到點(﹣2,0)距離最大最小即可
1)求最小
最小值為(﹣2,0)到a+b+1=0距離的平方減去4,得﹣
2)求最大
最大值為(﹣2,0)與(﹣1,2)距離
原式最大=(
+2)2﹣4=5+4
故選B
科目:高中數(shù)學 來源: 題型:
【題目】已知從橢圓
的一個焦點看兩短軸端點所成視角為
,且橢圓經(jīng)過
.
(1)求橢圓的方程;
(2)是否存在實數(shù)
,使直線
與橢圓有兩個不同交點
,且
(
為坐標原點),若存在,求出
的值.不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱
中,底面
是邊長為2的正方形,
分別為線段
,
的中點.
![]()
(1)求證:
||平面
;
(2)四棱柱
的外接球的表面積為
,求異面直線
與
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高一年級有學生
名,高二年級有
學生名.現(xiàn)用分層抽樣方法(按高一年級、高二年級分二層)從該校的學生中抽取
名學生,調(diào)查他們的數(shù)學學習能力.
(Ⅰ)高一年級學生中和高二年級學生中各抽取多少學生?
(Ⅱ)通過一系列的測試,得到這
名學生的數(shù)學能力值.分別如表一和表二
表一:
高一年級 |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
表二:
高二年級 |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
①確定
,并在答題紙上完成頻率分布直方圖;
②分別估計該校高一年級學生和高二年級學生的數(shù)學能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
③根據(jù)已完成的頻率分布直方圖,指出該校高一年級學生和高二年級學生的數(shù)學能力值分布特點的不同之處(不用計算,通過觀察直方圖直接回答結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在鈍角△ABC中,∠A為鈍角,令
,若
.現(xiàn)給出下面結論:
①當
時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為
,
,當
時,
;
③若點D在△ABC內(nèi)部(不含邊界),則
的取值范圍是
;
④若點D在線段BC上(不在端點),則![]()
⑤若
,其中點E在直線BC上,則當
時,
.
其中正確的有(寫出所有正確結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
f.
(1)如果函數(shù)
的單調(diào)遞減區(qū)間為
,求函數(shù)
的解析式;
(2)在(1)的條件下,求函數(shù)
的圖象在點
處的切線方程;
(3)若不等式
恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的自動通風設施.該設施的下部
是等腰梯形,其中
為2米,梯形的高為1米,
為3米,上部
是個半圓,固定點
為
的中點.
是由電腦控制可以上下滑動的伸縮橫桿(橫桿面積可忽略不計),且滑動過程中始終保持和
平行.當
位于
下方和上方時,通風窗的形狀均為矩形
(陰影部分均不通風).
(1)設
與
之間的距離為
(
且
)米,試將通風窗的通風面積
(平方米)表示成關于
的函數(shù)
;
(2)當
與
之間的距離為多少米時,通風窗的通風面積
取得最大值?
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且滿足4Sn﹣1=an2+2an , n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)設bn=
,數(shù)列{bn}的前n項和為Tn , 證明:
≤Tn<
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的高AM所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0與BC相交于點P,若點B的坐標為(1,2).
![]()
(1)分別求AB和BC所在直線的方程;
(2)求P點坐標和AC所在直線的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com