欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知實數(shù)x,y滿足(x-1)2+(y-4)2=1,求$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$的取值范圍.

分析 分x=0與x≠0兩種情況討論,當(dāng)x≠0時,利用換元法及直線與圓的位置關(guān)系即可.

解答 解:當(dāng)x=0時,$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$=0;
當(dāng)x≠0時,$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$=$\frac{1}{\frac{y-1}{x}+\frac{x}{y-1}}$,
∵動點落在(x-1)2+(y-4)2=1上,
∴可令x=1+cosθ,y=4+sinθ,
令$\frac{y-1}{x}$=t,則t=$\frac{4+sinθ-1}{1+cosθ}$=$\frac{sinθ-(-3)}{cosθ-(-1)}$,
即t表示經(jīng)過圓x2+y2=1與定點(-1,-3)的直線l的斜率,
設(shè)直線l的方程為:tx-y+t-3=0,
由1=$\frac{|t-3|}{\sqrt{{t}^{2}+1}}$,解得t=$\frac{4}{3}$,
∴t=$\frac{y-1}{x}$∈[$\frac{4}{3}$,+∞),
∴$\frac{y-1}{x}$+$\frac{x}{y-1}$≥$\frac{25}{12}$,當(dāng)且僅當(dāng)y=±x-1時等號成立,
∴0<$\frac{1}{\frac{y-1}{x}+\frac{x}{y-1}}$≤$\frac{12}{25}$,
綜上所述,0≤$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$≤$\frac{12}{25}$.

點評 本題考查分類討論的思想,考查直線與圓的位置關(guān)系,考查換元法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在極坐標(biāo)系中,點A與點B(-4$\sqrt{2}$,$\frac{3π}{4}$)關(guān)于極軸所在直線對稱,在極軸上求一點P,使得點P與點A的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,an+1-an=2anan+1(n≥2且n∈N).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{2}^{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn;
(3)若數(shù)列{cn}滿足cn=an•an+1,數(shù)列{cn}的前n項和為Tn,求證:$\frac{1}{3}≤{T}_{n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,直線l過點F2與橢圓交于A、B兩點,且△F1AB的周長為4$\sqrt{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l使△F1AB的面積為$\frac{4}{3}$?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.偶函數(shù)f(x)滿足f(x)=f(2-x),且當(dāng)x∈[-1,0]時,f(x)=cos$\frac{πx}{2}$-1,若函數(shù)g(x)=f(x)-logax有且僅有三個零點,則實數(shù)a的取值范圍是(  )
A.$({\frac{1}{5},\frac{1}{3}})$B.$({\frac{1}{4},\frac{1}{2}})$C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示的莖葉圖記錄了華潤萬家在渭南城區(qū)甲、乙連鎖店四天內(nèi)銷售請客的某項指標(biāo)統(tǒng)計:
(1)求甲、乙連鎖店這項指標(biāo)的方差,并比較甲、乙該項指標(biāo)的穩(wěn)定性;
(2)每次都從甲、乙兩店統(tǒng)計數(shù)據(jù)中隨機各選一個進行對比分析,共選了3次(有放回選取),設(shè)選取的兩個數(shù)據(jù)中甲的數(shù)據(jù)大于乙的數(shù)據(jù)的次數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.湖南衛(wèi)視“我是歌手”這個節(jié)目深受廣大觀眾喜愛,節(jié)目每周直播一次,在某周比賽中歌手甲、乙、丙競演完畢,現(xiàn)場的某4位大眾評審對這3位歌手進行投票,每位大眾評審只能投一票且把票投給任一歌手是等可能的,求:
(Ⅰ)恰有2人把票投給歌手甲的概率;
(Ⅱ)投票結(jié)束后得票歌手的個數(shù)ζ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題的說法錯誤的是(  )
A.若復(fù)合命題p∧q為假命題,則p,q都是假命題
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.對于命題p:?x∈R,x2+x+1>0 則¬p:?x∈R,x2+x+1≤0
D.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式(x-1)2+2<0的解集是∅.

查看答案和解析>>

同步練習(xí)冊答案