【題目】已知
,T是由A的子集組成的集合,滿足性質(zhì):空集和
屬于
,且任意兩個元素的交和并也屬于T,
(1)當(dāng)T的元素個數(shù)為2時,請寫出所有符合條件的T.
(2)當(dāng)T的元素個數(shù)為3時,請寫出所有符合條件的T.
(3)求所有符合條件的T的個數(shù).
【答案】(1)
;(2)答案見詳解;(3)
.
【解析】
(1)根據(jù)條件可知
中元素至少有
個,當(dāng)有
個元素時,則
;
(2)當(dāng)
中元素有
個時,此時一定包含
,還有一個元素可以從剩余的
個
的子集中選取一個;
(3)考慮
中元素個數(shù)為:
的情況,然后將所有的可能數(shù)加在一起即可得到符合條件的
的個數(shù).
(1)因為空集和
屬于
,所以
中至少有
個元素,
所以當(dāng)
中僅有
個元素時,
;
(2)當(dāng)
中有
個元素時,因為空集和
屬于
,所以
中還有一個其余元素,
此其余元素可從
的
個子集中任選一個,此時
的個數(shù)為
,即為:
,
,
,
,
,
;
(3)當(dāng)
中有
個元素時,此時
可為:
,
,
,
,
,
,
,
,
,故滿足的
個數(shù)為
;
當(dāng)
中有
個元素時,此時
可為:
,
,
,
,
,
,故滿足的
個數(shù)為
;
當(dāng)
中有
個元素時,此時
可為:
,
,
,
,
,
,故滿足的
的個數(shù)為
;
當(dāng)
中有
個元素時,此時沒有符合條件的
;
當(dāng)
中有
個元素時,此時
可為:
,故滿足條件的
的個數(shù)為
.
綜上可知:滿足條件的
的個數(shù)為
個.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】繳納個人所得稅是收入達(dá)到繳納標(biāo)準(zhǔn)的公民應(yīng)盡的義務(wù).
①個人所得稅率是個人所得稅額與應(yīng)納稅收入額之間的比例;
②應(yīng)納稅收入額=月度收入-起征點(diǎn)金額-專項扣除金額(三險一金等);
③2018年8月31日,第十三屆全國人民代表大會常務(wù)委員會第五次會議《關(guān)于修改中華人民共和國個人所得稅法的決定》,將個稅免征額(起征點(diǎn)金額)由3500元提高到5000元.下面兩張表格分別是2012年和2018年的個人所得稅稅率表:
2012年1月1日實行:
級數(shù) | 應(yīng)納稅收入額(含稅) | 稅率( | 速算扣除數(shù) |
一 | 不超過1500元的部分 | 3 | 0 |
二 | 超過1500元至4500元的部分 | 10 | 105 |
三 | 超過4500元至9000元的部分 | 20 | 555 |
四 | 超過9000元至35000元的部分 | 25 | 1005 |
五 | 超過35000元至55000元的部分 | 30 | 2755 |
六 | 超過55000元至80000元的部分 | 35 | 5505 |
七 | 超過80000元的部分 | 45 | 13505 |
2018年10月1日試行:
級數(shù) | 應(yīng)納稅收入額(含稅) | 稅率( | 速算扣除數(shù) |
一 | 不超過3000元的部分 | 3 | 0 |
二 | 超過3000元至12000元的部分 | 10 | 210 |
三 | 超過12000元至25000元的部分 | 20 | 1410 |
四 | 超過25000元至35000元的部分 | 25 | 2660 |
五 | 超過35000元至55000元的部分 | 30 | 4410 |
六 | 超過55000元至80000元的部分 | 35 | 7160 |
七 | 超過80000元的部分 | 45 | 15160 |
(1)何老師每月工資收入均為13404元,專項扣除金額3710元,請問何老師10月份應(yīng)繳納多少元個人所得稅?若與9月份相比,何老師增加收入多少元?>
(2)對于財務(wù)人員來說,他們計算個人所得稅的方法如下:應(yīng)納個人所得稅稅額=應(yīng)納稅收入額×適用稅率-速算扣除數(shù),請解釋這種計算方法的依據(jù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
在以
為焦點(diǎn)的雙曲線
上,過
作
軸的垂線,垂足為
,若四邊形
為菱形,則該雙曲線的離心率為( )
![]()
A.
B. 2 C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列各曲線的標(biāo)準(zhǔn)方程.
(1)長軸長為
,離心率為
,焦點(diǎn)在
軸上的橢圓;
(2)已知雙曲線的漸近線方程為
,焦距為
,求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為
,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求圓C的一個參數(shù)方程;
(2)在平面直角坐標(biāo)系中,
是圓C上的動點(diǎn),試求
的最大值,并求出此時點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖半圓
的直徑為4,
為直徑
延長線上一點(diǎn),且
,
為半圓周上任一點(diǎn),以
為邊作等邊
(
、
、
按順時針方向排列)
![]()
(1)若等邊
邊長為
,
,試寫出
關(guān)于
的函數(shù)關(guān)系;
(2)問
為多少時,四邊形
的面積最大?這個最大面積為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①對于獨(dú)立性檢驗,
的值越大,說明兩事件相關(guān)程度越大,②以模型
去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
的值分別是
和
,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線
=
+
及回歸系數(shù)
,可以精確反映變量的取值和變化趨勢,其中正確的個數(shù)是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實數(shù)
,使得函數(shù)
的極值大于
?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com