【題目】已知
.
(1)若關(guān)于
的方程
在
上恒成立,求
的值;
(2)證明:當(dāng)
時,
.
【答案】(1)
;(2)見解析
【解析】試題分析:(1)令
,討論
的取值,只需
即可;
(2)由(1)知
時,
,即
恒成立,令
,即
,一次賦值
,再累加得
,再取對數(shù)即可.
試題解析:
(1)令
,
若
,與已知矛盾,
若
,則
,顯然不滿足在
上
恒成立,
若
,對
求導(dǎo)可得
,
由
解得
,由
解得
,
∴
在
上單調(diào)遞減,在
上單調(diào)遞增,
∴
, ∴要使
恒成立,則須使
成立,
即
恒成立,兩邊取對數(shù)得,
,整理得
,即須此式成立,
令
,則
,顯然當(dāng)
時,
,當(dāng)
時,
,于是函數(shù)
的
上單調(diào)遞減,在
單調(diào)遞增,
∴
,即當(dāng)且僅當(dāng)
時,
恒成立,
∴
滿足條件,綜上所述,
.
(2)由(1)知
時,
,即
恒成立,
令
,即
,
即
,同理,
,
,
,
將上式左右相加得:
,
即
,即
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856299)已知雙曲線
(a>0,b>0)的左、右焦點(diǎn)分別是F1,F2,點(diǎn)P是其上一點(diǎn),雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實(shí)軸長為( )
A. 2 B.
C. 2或
D. 1或![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某讀者協(xié)會為了了解該地區(qū)居民睡前看書的時間情況,從該地區(qū)睡前看書的居民中隨機(jī)選取了n人進(jìn)行調(diào)查,現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計得到如圖所示的頻率分布直方圖.則下列說法正確的是( )
![]()
A. 睡前看書時間介于40~50分鐘的頻率為0.03
B. 睡前看書時間低于30分鐘的頻率為0.67
C. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于30~50分鐘的有67人
D. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于20~40分鐘的有600人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax2(x∈R),e=2.718 28…為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;
(2)若函數(shù)f(x)為R上的單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在標(biāo)準(zhǔn)溫度和大氣壓下,人體血液中氫離子的物質(zhì)的量的濃度(單位mol/L,記作
)和氫氧根離子的物質(zhì)的量的濃度(單位mol/L,記作
)的乘積等于常數(shù)
.已知pH值的定義為
,健康人體血液的pH值保持在7.35~7.45之間,那么健康人體血液中的
可以為(參考數(shù)據(jù):
,
)
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+1)=-f(x),且當(dāng)x∈[0,1)時,f(x)=log2(x+1),給出下列命題
①f(2014)+f(-2015)=0;
②函數(shù)f(x)在定義域上是周期為2的函數(shù);
③直線y=x與函數(shù)f(x)的圖象有2個交點(diǎn);
④函數(shù)f(x)的值域?yàn)?/span>(-1,1).
其中正確的是( )
A. ①② B. ②③
C. ①④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為F,直線
與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且
.
(1)求拋物線的方程;
(2)過F的直線l與拋物線相交于A,D兩點(diǎn),與圓
相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過A,D兩點(diǎn)分別作拋物線的切線,兩條切線相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的五面體
中,
,
,
,四邊形
為正方形,平面
平面
.
![]()
(1)證明:在線段
上存在一點(diǎn)
,使得
平面
;
(2)求
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com