【題目】橢圓
(
)的左、右焦點(diǎn)分別為
,
,過
作垂直于
軸的直線
與橢圓
在第一象限交于點(diǎn)
,若
,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
,
是橢圓
上位于直線
兩側(cè)的兩點(diǎn).若直線
過點(diǎn)
,且
,求直線
的方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在點(diǎn)
處的切線是
.
(1)求函數(shù)
的極值;
(2)當(dāng)
恒成立時,求實數(shù)
的取值范圍(
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,原點(diǎn)為
,橢圓
的動弦
過焦點(diǎn)
且不垂直于坐標(biāo)軸,弦
的中點(diǎn)為
,過
且垂直于線段
的直線交直線
于點(diǎn)
.
(1)證明:
三點(diǎn)共線;
(2)求
的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,
,
,
,
,點(diǎn)
在棱
上,且
.
![]()
(Ⅰ)求證:
;
(Ⅱ)是否存在實數(shù)
,使得二面角
的余弦值為
?若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
若f(x1)=f(x2),且x1<x2,關(guān)于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)函數(shù)
的圖象與
的圖象無公共點(diǎn),求實數(shù)
的取值范圍;
(Ⅱ)是否存在實數(shù)
,使得對任意的
,都有函數(shù)
的圖象在
的圖象的下方?若存在,請求出整數(shù)
的最大值;若不存在,請說理由.
(參考數(shù)據(jù):
,
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
的左,右焦點(diǎn)分別為
,若雙曲線上存在點(diǎn)
,使
,則該雙曲線的離心率
范圍為( )
A. (1,1
) B. (1,1
) C. (1,1
] D. (1,1
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(其中
為參數(shù)),曲線
,以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線
的普通方程和曲線
的極坐標(biāo)方程;
(2)若射線
與曲線
,
分別交于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com