| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
分析 運用對應邊成比例,可得QC∥PE,再由雙曲線的定義,以及直線和圓相切的性質,運用勾股定理和離心率公式,建立方程關系即可得到結論.
解答
解:設左焦點為F′,
圓心坐標C(-$\frac{c}{2}$,0),半徑R=$\frac{4}$,
則$\frac{FC}{FE}$=$\frac{\frac{c}{2}}{2c}$=$\frac{1}{4}$,
∵$\overrightarrow{PQ}$=3$\overrightarrow{QF}$,
∴|$\overrightarrow{PQ}$|=3|$\overrightarrow{QF}$|,
∴$\frac{FQ}{FP}$=$\frac{1}{4}$,
即$\frac{FQ}{FP}$=$\frac{FC}{FE}$=$\frac{1}{4}$,
則QC∥PE,
則PE=4QC=4×$\frac{4}$=b,
∵直線PF與圓(x+$\frac{c}{2}$)2+y2=$\frac{b^2}{16}$相切于點Q,
∴QC⊥PF,
則PE⊥PF,
則PF=$\sqrt{F{E}^{2}-P{E}^{2}}$=$\sqrt{4{c}^{2}-^{2}}$,
由雙曲線的定義可得,|PF|-|PE|=2a,
即$\sqrt{4{c}^{2}-^{2}}$-b=2a,
即$\sqrt{4{c}^{2}-^{2}}$=2a+b,
平方得4c2-b2=4a2+4ab+b2,
即4c2-4a2-2b2=4ab,
即4b2-2b2=4ab,
即2b2=4ab,
則b=2a,c2=5a2,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故選:A.
點評 本題考查雙曲線的定義和性質,考查離心率的求法,考查直線和圓相切的條件,以及中位線定理和勾股定理的運用,考查運算能力,利用數(shù)形結合是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{36}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com