過(guò)點(diǎn)
A(1,2)作直線(xiàn)l使它在兩坐標(biāo)軸上的截距的絕對(duì)值相等,滿(mǎn)足條件的直線(xiàn)l的條數(shù)是[
]|
A .1 |
B .2 |
C .3 |
D .4 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖梯形ABCD,AD∥BC,∠A=900,過(guò)點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE
折成直二面角D-EC-AB.
(1)求直線(xiàn)BD與平面ABCE所成角的正切值;
(2)設(shè)線(xiàn)段AB的中點(diǎn)為
,在直線(xiàn)DE上是否存在一點(diǎn)
,使得
∥面BCD?若存在,請(qǐng)指出點(diǎn)
的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直三棱柱
中,
,
,
是
和
的交點(diǎn), 若
.
(1)求
的長(zhǎng); (2)求點(diǎn)
到平面
的距離;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問(wèn)中,利用ACC
A
為正方形,
AC=3
第二問(wèn)中,利用面BB
C
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
,第三問(wèn)中,利用三垂線(xiàn)定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為![]()
解法一: (1)連AC
交A
C于E, 易證ACC
A
為正方形,
AC=3
…………… 5分
(2)在面BB
C
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
… 8分
(3) 易得AC![]()
面A
CB,
過(guò)E作EH
A
B于H, 連HC
,
則HC![]()
A
B
![]()
C
HE為二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小為
……… 12分
解法二: (1)分別以直線(xiàn)C
B、CC
、C
A為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h(huán)) ……… 4分
![]()
·
=0,
h=3
(2)設(shè)平面A
BC
得法向量
=(a, b, c),則可求得
=(3, 4, 0) (令a=3)
點(diǎn)A到平面A
BC
的距離為H=|
|=
……… 8分
(3) 設(shè)平面A
BC的法向量為
=(x, y, z),則可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
滿(mǎn)足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小為![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com