(本小題滿分14分)如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點.
![]()
(1)證明:平面ABC
平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大。
(1)見解析(2) ![]()
【解析】
試題分析:(1)證明面面垂直幾何法就要證線面垂直,要證線面垂直就要證線線垂直;線線、線面、面面垂直之間相互轉化. 由題意知從點
出發(fā)的三條件直線兩兩垂直,從而
,又
在平面
內(nèi),所以可證得平面ABC
平面ADC.證明面面垂直向量法可證法向量垂直,由題意知從點
出發(fā)的三條件直線兩兩垂直,可以建立空間直角坐標系.
(2)求二面角可用兩種向量法(面向量和法向量)或幾何法,面向量法即在兩個半平面內(nèi)分別從頂點
出發(fā)與棱
垂直的兩個向量所成的角.幾何法(三垂線法)重點是找到二面角的平面角,①在幾何體內(nèi)找第三個平面與二面角的兩個半平都垂直,交線所成角即為平面角;如果找不到可以退而求其次,找第三個平面與二面角的其中一個半平垂直
.②
與另外一個半
交于點
,過點
作交線
的垂線
③過點
作棱
的垂線
④連
所得到的
為二面角的平面角⑤在直角三角形
求角.用法向量法求二面角不容易判斷所求出的是二面角還是其補角,所以盡量不用它.
試題解析:
(1)
![]()
又
(4分)
又
(6分)
![]()
(2)作CG^BD于點G,作GH^BM于點HG,連接CH. (8分)
![]()
又
![]()
又![]()
又![]()
![]()
![]()
所以ÐCHG為二面角的平面角. (10分)
在Rt△BCD中,
CD=BD
=
,CG=CD
,BG=BC![]()
在Rt△BDM中,HG=
=![]()
在Rt△CHG中,tanÐCHG=![]()
所以
即二面角C-BM-D的大小為60°. (14分)
考點:二面角的平面角及求法;直線與平面垂直的判定;平面與平面垂直的判定.
科目:高中數(shù)學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設
,求
及數(shù)列{
}的通項公式;
(3)記
,求數(shù)列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com