(本小題滿分14分)
設(shè)橢圓
的左、右焦點(diǎn)分別為
是橢圓上的一點(diǎn),
,原點(diǎn)
到直線
的距離為
.
(Ⅰ)證明
;
(Ⅱ)設(shè)
為橢圓上的兩個(gè)動(dòng)點(diǎn),
,過(guò)原點(diǎn)
作直線
的垂線
,垂足為
,求點(diǎn)
的軌跡方程.
(Ⅰ)![]()
(Ⅱ)點(diǎn)
的軌跡方程為![]()
【解析】(Ⅰ)證法一:由題設(shè)
及
,
,不妨設(shè)點(diǎn)
,其中
.由于點(diǎn)
在橢圓上,有
,即
.
解得
,從而得到
.
直線
的方程為
,整理得
.
由題設(shè),原點(diǎn)
到直線
的距離為
,即
,
將
代入上式并化簡(jiǎn)得
,即
.
證法二:同證法一,得到點(diǎn)
的坐標(biāo)為
.
過(guò)點(diǎn)
作
,垂足為
,易知![]()
![]()
,故
.
由橢圓定義得
,又
,
所以
,
解得
,而
,得
,即
.
(Ⅱ)解法一:設(shè)點(diǎn)
的坐標(biāo)為
.
當(dāng)
時(shí),由
知,直線
的斜率為
,所以直線
的方程為
,或
,其中
,
.
點(diǎn)
的坐標(biāo)滿足方程組![]()
將①式代入②式,得
,
整理得
,
于是
,
.
由①式得![]()
.
由
知
.將③式和④式代入得
,
.
將
代入上式,整理得
.
當(dāng)
時(shí),直線
的方程為
,
的坐標(biāo)滿足方程組![]()
所以
,
.
由
知
,即
,
解得
.
這時(shí),點(diǎn)
的坐標(biāo)仍滿足
.
綜上,點(diǎn)
的軌跡方程為
.
解法二:設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
,由
,垂足為
,可知直線
的方程為
.
記
(顯然
),點(diǎn)
的坐標(biāo)滿足方程組![]()
由①式得
. 、
由②式得
. 、
將③式代入④式得
.
整理得
,
于是
. ⑤
由①式得
. 、
由②式得
. ⑦
將⑥式代入⑦式得
,
整理得
,
于是
. 、
由
知
.將⑤式和⑧式代入得
,
.
將
代入上式,得
.
所以,點(diǎn)
的軌跡方程為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(diǎn)(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列{
}的通項(xiàng)公式;
(3)記
,求數(shù)列{
}的前n項(xiàng)和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第
天(
)的銷售價(jià)格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關(guān)于第
天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點(diǎn)
處的切線與直線
平行.
⑴ 求
,
滿足的關(guān)系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com