【題目】集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},則a的值為( )
A. 0 B. 1
C. 2 D. 4
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b∈R,則“a>0,b>0”是“a+b>0”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線
過點(diǎn)
,傾斜角
,再以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
分別交于
、
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
的離心率
,過點(diǎn)
和
的直線與原點(diǎn)的距離為
.
![]()
(1)求橢圓的方程;
(2)設(shè)
為橢圓的左、右焦點(diǎn),過
作直線交橢圓于
兩點(diǎn),求△
的內(nèi)切圓半徑
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的命題:“垂直于同一直線的兩條直線平行”,在立體幾何中,可以得到命題“__________”,這個類比命題的真假性是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列表示圖書借閱的流程正確的是( )
A. 入庫→閱覽→借書→找書→出庫→還書 B. 入庫→找書→閱覽→借書→出庫→還書
C. 入庫→閱覽→借書→找書→還書→出庫 D. 入庫→找書→閱覽→借書→還書→出庫
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱
中,底面
是直角三角形,
,
為側(cè)棱
的中點(diǎn).
(1)求異面直線
、
所成角的余弦值;
(2)求二面角
的平面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
在
處取得極值,求
的值;
(Ⅱ)若
在區(qū)間
上單調(diào)遞增, 求
的取值范圍;
(Ⅲ)討論函數(shù)
的零點(diǎn)個數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com