【題目】已知曲線y=5
,求:
(1)曲線上與直線y=2x-4平行的切線方程.
(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.
【答案】(1)16x-8y+25=0;(2)5x-4y+20=0.
【解析】
試題(1)求導(dǎo)數(shù),利用曲線與直線y=2x﹣4平行,求出切點(diǎn)坐標(biāo),即可求出曲線與直線y=2x﹣4平行的切線的方程.
(2)設(shè)切點(diǎn),可得切線方程,代入P,可得切點(diǎn)坐標(biāo),即可求出過點(diǎn)P(0,5)且與曲線相切的直線的方程.
試題解析:
(1)設(shè)切點(diǎn)為(x0,y0),由y=5
,得y′
=
.
所以切線與y=2x-4平行,
所以
=2,所以x0=
,所以y0=
.
則所求切線方程為y-
=2
,
即16x-8y+25=0.
(2)因?yàn)辄c(diǎn)P(0,5)不在曲線y=5
上,
故需設(shè)切點(diǎn)坐標(biāo)為M(x1,y1),
則切線斜率為
.
又因?yàn)榍芯斜率為
,
所以
=
=
,
所以2x1-2
=x1,得x1=4.
所以切點(diǎn)為M(4,10),斜率為
,
所以切線方程為y-10=
(x-4),
即5x-4y+20=0.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選出了三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.某學(xué)校為了了解高一年級200名學(xué)生選考科目的意向,隨機(jī)選取20名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有5人 | 5 | 5 | 2 | 1 | 2 | 0 |
選考方案待確定的有7人 | 6 | 4 | 3 | 2 | 4 | 2 | |
女生 | 選考方案確定的有6人 | 3 | 5 | 2 | 3 | 3 | 2 |
選考方案待確定的有2人 | 1 | 2 | 1 | 0 | 1 | 1 |
(1)在選考方案確定的男生中,同時(shí)選考物理、化學(xué)、生物的人數(shù)有多少?
(2)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長為2的等邊三角形,
.
![]()
(1)求四棱錐P-ABCD的體積VP-ABCD;
(2)在線段PB上是否存在一點(diǎn)M,使得CM∥平面BDF?如果存在,求
的值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,圓
方程為
,點(diǎn)
,直線
過點(diǎn)
![]()
(1)如圖1,直線的斜率為
,直線
交圓
于
不同兩點(diǎn),求弦
的長度;
(2)動(dòng)點(diǎn)
在圓
上作圓周運(yùn)動(dòng),線段
的中點(diǎn)為點(diǎn)
,求點(diǎn)
的軌跡方程;
(3)在(1)中,如圖2,過點(diǎn)
作直線
,交圓
于
不同兩點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為![]()
,點(diǎn)P為直線l:
上且不在x軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為A、B和C、D、O為坐標(biāo)原點(diǎn).
![]()
(1)求
的周長;
(2)設(shè)直線![]()
的斜線分別為![]()
,證明:
;
(3)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率
滿足
?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面命題正確的是( )
A.“
”是“
”的 充 分不 必 要條件
B.命題“若
,則
”的 否 定 是“ 存 在
,則
”.
C.設(shè)
,則“
且
”是“
”的必要而不充分條件
D.設(shè)
,則“
”是“
”的必要 不 充 分 條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為
.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過2小時(shí),請完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.
![]()
男生 | 女生 | 總計(jì) | |
每周平均課外閱讀時(shí)間不超過2小時(shí) | |||
每周平均課外閱讀時(shí)間超過2小時(shí) | |||
總計(jì) |
附:![]()
| 0.100 | 0.050 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明
如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形
若直角三角形中較小的銳角
,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com