【題目】如圖,在四棱錐S-ABCD中,
平面
,底面ABCD為直角梯形,
,
,且![]()
![]()
(Ⅰ)求
與平面
所成角的正弦值.
(Ⅱ)若E為SB的中點,在平面
內(nèi)存在點N,使得
平面
,求N到直線AD,SA的距離.
【答案】(Ⅰ)
;(Ⅱ)N到直線AD,SA的距離分別為1,1.
【解析】
(Ⅰ)以點A為原點,以AD所在方向為x軸,以AS所在方向為z軸,以AB所在方向為y軸,建立空間直角坐標系,利用向量方法求
與平面
所成角的正弦值;(Ⅱ))設
,再根據(jù)已知求出x,z,再求出N到直線AD,SA的距離.
解:(I)以點A為原點,以AD所在方向為x軸,以AS所在方向為z軸,以AB所在方向為y軸,建立空間直角坐標系,D(1,0,0),S(0,0,2),
,
,
,
設平面
的一個法向量為![]()
則由![]()
設
與平面
所成角為
,
則
.
(II)設
,S(0,0,2),B(0,2,0),E(0,1,1),
![]()
由![]()
故N到直線AD,SA的距離分別為1,1.
科目:高中數(shù)學 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-
.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).在以原點
為極點,
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求直線
的極坐標方程和曲線
的直角坐標方程;
(2)若直線
與曲線
交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)當
時,
,求
的值;
(2)若
,求函數(shù)
的單調(diào)遞增區(qū)間;
(3)若對任意的
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出
名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為
萬元
,剩下的員工平均每人每年創(chuàng)造的利潤可以提高
.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則
的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100
,水溫
與時間
近似滿足一次函數(shù)關系;②用開水將熱飲沖泡后在室溫下放置,溫度
與時間
近似滿足函數(shù)的關系式為
(
為常數(shù)), 通常這種熱飲在40
時,口感最佳,某天室溫為
時,沖泡熱飲的部分數(shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時飲用,最少需要的時間為
![]()
A. 35
B. 30![]()
C. 25
D. 20![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com