欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知{an}是首項為1,公比為q的等比數(shù)列,且a4,a6,a5成等差數(shù)列.
(Ⅰ)求{an}的前n項和Sn;
(Ⅱ)設(shè){bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Tn,當(dāng)n≥2時,比較Tn與bn的大小,并說明理由.

分析 (Ⅰ)通過化簡2a6=a4+a5可知2q2-q-1=0,解方程可知q=1或q=-$\frac{1}{2}$,分兩種情況利用等比數(shù)列的求和公式計算即得結(jié)論;
(Ⅱ)通過(I)可知,分q=1或q=-$\frac{1}{2}$兩種情況討論即得結(jié)論.

解答 解:(Ⅰ)由題設(shè)2a6=a4+a5
又∵a1=1≠0,
∴2q2-q-1=0,
解得:q=1或q=-$\frac{1}{2}$,
①若q=1時,Sn=n;
②若$q=-\frac{1}{2}$時,${S_n}=\frac{{2({1-{{({-\frac{1}{2}})}^n}})}}{3}$;
(Ⅱ)由(I)可知,
①若q=1時,${T_n}=\frac{{{n^2}+3n}}{2}$,
當(dāng)n≥2時,${T_n}-{b_n}={T_{n-1}}=\frac{{({n-1})({n+2})}}{2}$,
故Tn>bn;
②若$q=-\frac{1}{2}$時,${T_n}=\frac{{-{n^2}+9n}}{4}$,
當(dāng)n≥2時,${T_n}-{b_n}={T_{n-1}}=\frac{{({n-1})({10-n})}}{4}$,
故對于n∈N+,當(dāng)2≤n≤9時,Tn>bn;
當(dāng)n=10時,Tn=bn;當(dāng)n≥11時,Tn<bn

點評 本題考查數(shù)列的通項及前n項和,考查分類討論的思想,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集介A={x|1<($\frac{1}{2}$)x<8},B={x|y=lg(x2+3x+2)},從集合A中任取一個元素,則這個元素也是集合B中元素的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,an+2log2bn=-1.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求證:數(shù)列{an•bn}的前n項和Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.下面四個圖案,都是由小正三角形構(gòu)成,設(shè)第n個圖形中所有小正三角形邊上黑點的總數(shù)為f(n).

(1)求出f(2),f(3),f(4),f(5);
(2)找出f(n)與f(n+1)的關(guān)系,并求出f(n)的表達(dá)式;
(3)求證:$\frac{1}{f(1)}$+$\frac{1}{f(2)}$+$\frac{1}{f(3)}$+…+$\frac{1}{f(n)}$<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an}滿足:a3a4=48,a3+a4=14.
(Ⅰ) 求數(shù)列{an}通項公式;
(Ⅱ) 記${b_n}={(\sqrt{2})^{a_n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項公式;
(2)若數(shù)列{cn}前n項和Cn=an+1,數(shù)列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax3+bx2+cx+d,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{ax+y+5≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=3x+y的最小值為5,則a的值為( 。
A.-17B.-2C.2D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,a1=1,(n+3)an+1=2nan(n∈N+),記bn=n(n+1)(n+2)an
(1)求證:{bn}為等比數(shù)列;
(2)設(shè)cn=$\frac{{a}_{n}}{3•{2}^{n}}$,且數(shù)列{cn}的前n項和為Sn,求證:Sn<$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案