分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)有${c_n}=({2n-1}){2^{n-1}}$,利用錯(cuò)位相減法即可得出.
解答 解:(1)設(shè){an}的公比為q,{bn}的公差為d,由題意q>0,
由已知,有$\left\{{\begin{array}{l}{2{q^2}-3d=2}\\{{q^4}-3d=10}\end{array}}\right.$,
消去d得q4-2q2-8=0,解得q=2,d=2,
所以{an}的通項(xiàng)公式為${a_n}={2^{n-1}},n∈{{N}^*}$,{bn}的通項(xiàng)公式為${b_n}=2n-1,n∈{{N}^*}$.
(2)由(1)有${c_n}=({2n-1}){2^{n-1}}$,設(shè){cn}的前n項(xiàng)和為Sn,
則${S_n}=1×{2^0}+3×{2^1}+5×{2^2}+…+({2n-1})×{2^{n-1}}$,
$2{S_n}=1×{2^1}+3×{2^2}+5×{2^3}+…+({2n-1})×{2^n}$,
兩式相減得$-{S_n}=1+{2^2}+{2^3}+…+{2^n}-({2n-1})×{2^n}=-({2n-3})×{2^n}-3$,
所以${S_n}=({2n-3}){2^n}+3$.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{12}{7}$ | B. | $\frac{12}{7}$ | C. | $\frac{12}{49}$ | D. | -$\frac{12}{49}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{13}{9}$ | B. | 3 | C. | $\frac{2}{3}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com