欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知△OFQ的面積為26,且·=m.

(1)設(shè)<m<4,求向量的夾角θ正切值的取值范圍;

(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q(如圖),||=c,m(-1)c2,當(dāng)?||取得最小值時(shí),求此雙曲線(xiàn)的方程.

解析:(1)∵

∴tanθ=.

又∵<m<4,∴1<tanθ<4.

(2)設(shè)所求的雙曲線(xiàn)方程為-=1(a>0,b>0),Q(x1,y1),則=(x1-c,y1),

∴SOFQ=||·|y1|=2.

∴y1.

又由·=(c,0)·(x1-c,y1)=(x1-c)c=(-1)c2,

∴x1=c.

∴||=.

當(dāng)且僅當(dāng)c=4時(shí),||最小,這時(shí)Q點(diǎn)坐標(biāo)為(,)或(,-).

故所求的雙曲線(xiàn)方程為-=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)當(dāng)
6
<m<4
6
時(shí),求向量
OF
FQ
的夾角θ的取值范圍;
(2)設(shè)|
OF
|=c,m=(
6
4
-1)c2
,若以中心O為坐標(biāo)原點(diǎn),焦點(diǎn)F在x非負(fù)半軸上的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q,當(dāng)|
OQ
|
取得最小值時(shí),求此雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△OFQ的面積為S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
,
FQ
的范圍;
(Ⅱ)設(shè)|
OF
|=c(c≥2),S=
3
4
c.
若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)Q,以c為變量,當(dāng)|
OQ
|
取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△OFQ的面積為2
6
,且
OF
FQ
=m,?
(1)設(shè)
6
<m<4
6
,求向量
OF
FQ
的夾角θ的取值范圍;?
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q(如圖),|
OF
|=c,m=(
6
4
-1)c2,當(dāng)|
OQ
|取最小值時(shí),求此雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設(shè)
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當(dāng)|
OQ
|
取得最小值時(shí),求此雙曲線(xiàn)的方程.
(3)設(shè)F1為(2)中所求雙曲線(xiàn)的左焦點(diǎn),若A、B分別為此雙曲線(xiàn)漸近線(xiàn)l1、l2上的動(dòng)點(diǎn),且2|AB|=5|F1F|,求線(xiàn)段AB的中點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•天津一模)已知△OFQ的面積為2
6
,且
OF
FQ
=m.
(1)設(shè)4
2
<m<4
6
,求向量
OF
FQ
夾角θ的取值范圍;
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q(如圖),若|
OF
|=c,m=(
6
4
-1)c2
,當(dāng)|
OQ
|取最小值時(shí),求此雙曲線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案