欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
3.某網店出售一種餅干,共有草莓味、巧克力味、香蕉味、香芋味四種口味,一位顧客在該店購買了兩袋這種餅干,“口味”選擇“隨機派送”,則這位顧客買到的兩袋餅干是同一種口味的概率是( 。
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{2}{3}$

分析 利用等可能事件概率計算公式直接求解.

解答 解:某網店出售一種餅干,共有草莓味、巧克力味、香蕉味、香芋味四種口味,
一位顧客在該店購買了兩袋這種餅干,“口味”選擇“隨機派送”,
基本事件總數n=4,
這位顧客買到的兩袋餅干是同一種口味包含的基本事件個數m=1,
∴這位顧客買到的兩袋餅干是同一種口味的概率是p=$\frac{m}{n}$=$\frac{1}{4}$.
故選:B.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F2,點$P(1,\frac{3}{2})$在橢圓C上,滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=$\frac{9}{4}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線l1過點P,且與橢圓只有一個公共點,直線l2與l1的傾斜角互補,且與橢圓交于異于點P的兩點M,N,與直線x=1交于點K(K介于M,N兩點之間).
(。┣笞C:|PM|•|KN|=|PN|•|KM|;
(ⅱ)是否存在直線l2,使得直線l1、l2、PM、PN的斜率按某種排序能構成等比數列?若能,求出l2的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知a,b,c分別為△ABC三個內角A,B,C的對邊,且$acosC+\sqrt{3}asinC=b+c$.
(1)求A;
(2)若$a=\sqrt{7}$,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求b與c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知平面內一動點M與兩定點B1(0,-1)和B2(0,1)連線的斜率之積等于-$\frac{1}{2}$
(Ⅰ)求動點M的軌跡E的方程:
(Ⅱ)設直線l:y=x+m(m≠0)與軌跡E交于A、B兩點,線段AB的垂直平分線交x軸于點P,當m變化時,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知定義在R上的函數f(x)滿足:①f(x)+f(2-x)=0;②f(x)-f(-2-x)=0;③在[-1,1]上的表達式為$f(x)=\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ 1-x,x∈(0,1]\end{array}\right.$,則函數f(x)與$g(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$的圖象在區(qū)間[-3,3]上的交點的個數為6.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知橢圓的標準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{\sqrt{3}}{2}$,且橢圓上的點到其中一個焦點最大距離為2+$\sqrt{3}$,拋物線C以原點為頂點,以橢圓與x軸正半軸的交點為焦點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知點M(2,0),問:x軸上是否存在一定點P,使得對于拋物線C上的任意兩點A和B,當$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)時,恒有點M到直線PA與PB的距離相等?若存在,則求點P的坐標,否則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.折紙已經成為開發(fā)少年兒童智力的一大重要工具和手段.已知在折疊“愛心”的過程中會產生如圖所示的幾何圖形,其中四邊形ABCD為正方形,G為線段BC的中點,四邊形AEFG與四邊形DGHI也為正方形,連接EB,CI,則向多邊形AEFGHID中投擲一點,該點落在陰影部分內的概率為$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,AC交BD于O,H為線段PC上一點.
(1)證明:平面BHD⊥平面PAC;
(2)若OH⊥PC,PC與底面ABCD所成的角為45°,求三棱錐H-BCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設函數f(x)=ex-e-x,g(x)=lg(mx2-x+$\frac{1}{4}$),若對任意x1∈(-∞,0],都存在x2∈R,使得f(x1)=g(x2),則實數m的最小值為( 。
A.-$\frac{1}{3}$B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

同步練習冊答案