【題目】已知函數(shù)
,若不等式
在
上恒成立,則
的最小值是( )
A.
B.
C.
D.![]()
【答案】B
【解析】
令h(x)f(x)﹣g(x)=lnx﹣(a﹣e)x﹣2b,利用導(dǎo)數(shù)求得h(x)max=h(
)=﹣ln(a﹣e)﹣1﹣2b≤0,求得
≥
,a>e,運(yùn)用導(dǎo)數(shù)求得a=2e時,可得所求最小值.
由題意可知:
在
上恒成立,
構(gòu)造函數(shù)
,原問題等價于
,
其中
,
若
,則
恒成立,函數(shù)
單調(diào)遞增,不合題意,
據(jù)此可知
,由導(dǎo)函數(shù)的符號可知:
函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
函數(shù)
的最大值
,
整理可得:
,則
,
構(gòu)造函數(shù)
,則
,
原問題等價于求解函數(shù)
的最大值.
由于
,
故
,
構(gòu)造函數(shù)
,
則
,
恒成立,則
在定義域內(nèi)單調(diào)遞減,注意到
,
故在區(qū)間
上,函數(shù)
,
,
單調(diào)遞減,
故在區(qū)間
上,函數(shù)
,
,
單調(diào)遞增,
函數(shù)
的最大值為
.
綜上可得:
的最小值是
.
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上是增函數(shù),求正數(shù)
的取值范圍;
(2)當(dāng)
時,設(shè)函數(shù)
的圖象與x軸的交點(diǎn)為
,
,曲線
在
,
兩點(diǎn)處的切線斜率分別為
,
,求證:
+
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:
人數(shù) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù) | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答題卡給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖,并由散點(diǎn)圖判斷銷售件數(shù)
與進(jìn)店人數(shù)
是否線性相關(guān)?(給出判斷即可,不必說明理由);
(2)建立
關(guān)于
的回歸方程(系數(shù)精確到0.01),預(yù)測進(jìn)店人數(shù)為80時,商品銷售的件數(shù)(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):
,
,
,
,
,
)
參考公式:
,
,其中
,
為數(shù)據(jù)
的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為1的正方形
沿
軸滾動,點(diǎn)
恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)
的軌跡方程是
,則對函數(shù)
有下列判斷:①函數(shù)
是偶函數(shù);②對任意的
,都有
;③函數(shù)
在區(qū)間
上單調(diào)遞減;④函數(shù)
的值域是
;⑤
.其中判斷正確的序號是__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
![]()
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間
(2)當(dāng)
時,求函數(shù)
在
上的最大值![]()
(3)當(dāng)
時,又設(shè)函數(shù)
,求證:當(dāng)
,且
時,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為1的正方體
,點(diǎn)
是四邊形
內(nèi)(含邊界)任意一點(diǎn),
是
中點(diǎn),有下列四個結(jié)論:
①
;②當(dāng)
點(diǎn)為
中點(diǎn)時,二面角
的余弦值
;③
與
所成角的正切值為
;④當(dāng)
時,點(diǎn)
的軌跡長為
.
其中所有正確的結(jié)論序號是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;
(1)求所取2個小球都是紅球的概率;
(2)求所取的2個小球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市對全市一定年齡的市民進(jìn)行了漢字聽寫測試.為了調(diào)查被測試市民的基本情況,組織方從參加測試的市民中隨機(jī)抽取120名市民,按他們的年齡分組:第一組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)若電視臺記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第1組市民中男性有3名,組織方要從第1組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊,求至少有1名女性群眾的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com