【題目】盒中有形狀、大小都相同的2個(gè)紅色球和3個(gè)黃色球,從中取出一個(gè)球,觀察顏色后放回并往盒中加入同色球4個(gè),再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率為( )
A.
B.
C.
D.![]()
【答案】A
【解析】
若取出的是紅色球,再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率為:
,若取出的是黃色球,再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率為:
,由此能求出再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率.
盒中有形狀、大小都相同的2個(gè)紅色球和3個(gè)黃色球,
從中取出一個(gè)球,觀察顏色后放回并往盒中加入同色球4個(gè),
若取出的是紅色球,再從盒中取出一個(gè)球,
則此時(shí)取出黃色球的概率為:
,
若取出的是黃色球,再從盒中取出一個(gè)球,
則此時(shí)取出黃色球的概率為:
,
∴再從盒中取出一個(gè)球,則此時(shí)取出黃色球的概率為:
,
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】作家馬伯庸小說《長(zhǎng)安十二時(shí)辰》中,靖安司通過長(zhǎng)安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中國(guó),“女排精神”概括的是頑強(qiáng)戰(zhàn)斗、勇敢拼搏精神.在某年度排球超級(jí)杯決賽中,中國(guó)女排與俄羅斯女排相遇,已知前四局中,戰(zhàn)成了
,且在決勝局中,中國(guó)隊(duì)與俄羅斯隊(duì)?wèi)?zhàn)成了
,根據(jù)中國(guó)隊(duì)與俄羅斯隊(duì)以往的較量,每個(gè)球中國(guó)隊(duì)獲勝的概率為
,假定每個(gè)球中國(guó)隊(duì)是否獲勝相互獨(dú)立,則再打不超過4球,中國(guó)隊(duì)獲得比賽勝利的概率為( )
(注:排球的比賽規(guī)則為5局3勝制,即比賽雙方中的一方先拿到3局勝利為獲勝隊(duì),其中前四局為25分制,即在一方先得到25分,且與對(duì)方的分差大于或等于2分,則先拿到25分的一方勝;若一方拿到25分后,但雙方分差小于2分,則比賽繼續(xù),直到一方領(lǐng)先2分為止;若前四局打成
,則決勝局采用15分制.)
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),設(shè)原點(diǎn)
在圓
的內(nèi)部,直線
與圓
交于
、
兩點(diǎn);以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線
和圓
的極坐標(biāo)方程,并求
的取值范圍;
(2)求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在極坐系中,點(diǎn)
繞極點(diǎn)
順時(shí)針旋轉(zhuǎn)角
得到點(diǎn)
.以
為原點(diǎn),極軸為
軸非負(fù)半軸,并取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線
:
繞
逆時(shí)針旋轉(zhuǎn)
得到曲線
.
(1)求曲線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)點(diǎn)
的極坐標(biāo)為
,直線
過點(diǎn)
且與曲線
交于
,
兩點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年是我國(guó)全面建成小康社會(huì)和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟(jì)總量超萬億元新起點(diǎn)上開啟發(fā)展新征程的重要?dú)v史節(jié)點(diǎn).作為制造業(yè)城市,佛山一直堅(jiān)持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國(guó)家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場(chǎng)”的創(chuàng)新發(fā)展之路.在推動(dòng)制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進(jìn)行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量x(
)(件)與相應(yīng)的生產(chǎn)總成本y(萬元)的四組對(duì)照數(shù)據(jù).
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
工廠研究人員建立了y與x的兩種回歸模型,利用計(jì)算機(jī)算得近似結(jié)果如下:
模型①:
模型②:
.
其中模型①的殘差(實(shí)際值-預(yù)報(bào)值)圖如圖所示:
![]()
(1)根據(jù)殘差分析,判斷哪一個(gè)模型更適宜作為y關(guān)于x的回歸方程?并說明理由;
(2)市場(chǎng)前景風(fēng)云變幻,研究人員統(tǒng)計(jì)歷年的銷售數(shù)據(jù)得到每件產(chǎn)品的銷售價(jià)格q(萬元)是一個(gè)與產(chǎn)量x相關(guān)的隨機(jī)變量,分布列為:
q |
|
|
|
P | 0.5 | 0.4 | 0.1 |
結(jié)合你對(duì)(1)的判斷,當(dāng)產(chǎn)量x為何值時(shí),月利潤(rùn)的預(yù)報(bào)期望值最大?最大值是多少(精確到0.1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
、
、
兩兩垂直,
,
,
,
為線段
上一點(diǎn)(端點(diǎn)除外).
![]()
(1)若異面直線
、
所成角的余弦值為
,求
的長(zhǎng);
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(0<b<2)的離心率為
,F為橢圓的右焦點(diǎn),PQ為過中心O的弦.
(1)求
面積的最大值;
(2)動(dòng)直線
與橢圓交于A,B兩點(diǎn),證明:在第一象限內(nèi)存在定點(diǎn)M,使得當(dāng)直線AM與直線BM的斜率均存在時(shí),其斜率之和是與t無關(guān)的常數(shù),并求出所有滿足條件的定點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱
中,
平面ABCD,底面ABCD是矩形,
,
,
,M為
的中點(diǎn).
![]()
(1)求證:D1M//平面BDC1;
(2)若棱
上存在點(diǎn)Q,滿足
與平面
所成角的正弦值為
,求異面直線
與BQ所成角的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com