【答案】
分析:(1)求出導(dǎo)數(shù)f′(x),當(dāng)a<4時,判斷出f′(x)符號即可.
(2)當(dāng)a=5時,先解f′(x)=0,再判斷根左右兩側(cè)導(dǎo)數(shù)的符號變化,由此即可得出答案.
(3)當(dāng)x≥1時,x
2+2lnx≥3x-2可變?yōu)閤
2+2lnx-3x≥-2,從而問題可轉(zhuǎn)化為求當(dāng)a=3時f(x)在[1,+∞)的最小值問題.
解答:解:定義域為:(0,+∞),
(1)

.
因為x>0,所以

≥

=4,
又a<4,所以f'(x)>0,
故當(dāng)a<4時,函數(shù)f(x)在(0,+∞)上是增函數(shù).
(2)當(dāng)a=5時,f′(x)=2x-5+

=

=

,
令f′(x)=0,得

或x=2.
當(dāng)

時,f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)

時,f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(2,+∞)時,f'(x)>0,函數(shù)f(x)單調(diào)遞增;
由上可知,當(dāng)

時,f(x)取極大值f(

)=

;
當(dāng)x=2時,f(x)取極小值f(2)=2ln2-6.
(3)即證:當(dāng)x≥1時,x
2+2lnx-3x≥-2,
由(1)知,當(dāng)a=3時,f(x)=x
2+2lnx-3x在(0,+∞)上是增函數(shù),
僅當(dāng)x=1時,f(x)在區(qū)間[1,+∞)上有最小值f(1)=-2,所以當(dāng)x≥1時,x
2+2lnx-3x≥-2成立,
即x
2+2lnx≥3x-2.
點評:本題考查了導(dǎo)數(shù)的綜合應(yīng)用:用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值問題,要深刻理解導(dǎo)數(shù)在研究函數(shù)中的作用.