【題目】以直角坐標(biāo)系
的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并且在兩種坐標(biāo)系中取相同的長度單位.若將曲線
(
為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
(縱坐標(biāo)不變),然后將所得圖象向右平移2個(gè)單位,再向上平移3個(gè)單位得到曲線C.直線l的極坐標(biāo)方程為
.
(1)求曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸交于點(diǎn)P,線段AB的中點(diǎn)為M,求
.
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)題意得到
(
為參數(shù))后,消去參數(shù)
即可得到曲線C的普通方程;
(2)將直線
的方程化為參數(shù)方程的標(biāo)準(zhǔn)形式并代入到圓
的方程,利用參數(shù)的幾何意義可解得結(jié)果.
(1)將曲線
(
為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
(縱坐標(biāo)不變),得到
, 然后將所得圖像向右平移2個(gè)單位,再向上平移3個(gè)單位得到
(
為參數(shù)),消去參數(shù)
得圓C的普通方程為
.
(2)由
得
,即
,因?yàn)?/span>
,所以
,
即直線l的直角坐標(biāo)方程為:
,傾斜角為
,點(diǎn)
,
設(shè)直線l的參數(shù)方程為
,代入圓C的普通方程
并整理得:
,
因?yàn)?/span>
,設(shè)
、
兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為
,
,則
點(diǎn)對(duì)應(yīng)的參數(shù)為
,
由韋達(dá)定理得
,
,
則
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形
為菱形,且
,取
中點(diǎn)為
.現(xiàn)將四邊形
沿
折起至
,使得
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若點(diǎn)
滿足
,當(dāng)
平面
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
交橢圓
于兩點(diǎn)
,
.
(1)若
,且點(diǎn)
滿足
,證明:點(diǎn)
不在橢圓
上;
(2)若橢圓
的左,右焦點(diǎn)分別為
,
,直線
與線段
和橢圓
的短軸分別交于兩個(gè)不同點(diǎn)
,
,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.對(duì)于n∈N*(n≥2),定義一個(gè)如下數(shù)陣:
,其中對(duì)任意的1≤i≤n,1≤j≤n,當(dāng)i能整除j時(shí),aij=1;當(dāng)i不能整除j時(shí),aij=0.設(shè)
.
(Ⅰ)當(dāng)n=6時(shí),試寫出數(shù)陣A66并計(jì)算
;
(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:
;
(Ⅲ)若
,
,求證:g(n)﹣1<f(n)<g(n)+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠肺炎的疫情中,某醫(yī)院從3位女醫(yī)生,5位男醫(yī)生中選出4人參加援鄂醫(yī)療隊(duì),至少有一位女醫(yī)生入選,其中女醫(yī)生甲和男醫(yī)生乙不能同時(shí)參加,則不同的選法共有種______(用數(shù)字填寫答案).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在
實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80分及以上的花苗為優(yōu)質(zhì)花苗.
![]()
(1)用樣本估計(jì)總體,以頻率作為概率,若在
兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△SAB是邊長為2的等邊三角形,∠ACB=45°,當(dāng)三棱錐S﹣ABC體積最大時(shí),其外接球的表面積為( 。
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出有關(guān)
的四個(gè)論斷:①
;②
;③
或
;④
.以其中的三個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:若______,則_______(用序號(hào)表示)并給出證明過程:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表為
年至
年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼
年份
.
年份代碼 |
|
|
|
|
線下銷售額 |
|
|
|
|
(1)已知
與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測(cè)
年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了
位男顧客、
位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有
人、女顧客有
人,能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com