【題目】如圖1所示,在等腰梯形
,
,
,垂足為
,
,
.將
沿
折起到
的位置,使平面
平面
,如圖2所示,點(diǎn)
為棱
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
【答案】(1)證明見解析;(2)證明見解析;(3)
.
【解析】
(1)在圖1的等腰梯形
內(nèi),過
作
的垂線,垂足為
,可得四邊形
為正方形,且
,
為
中點(diǎn).在圖2中,連結(jié)
,證明
.結(jié)合
,利用平面與平面平行的判定可得平面
平面
,從而得到
平面
;
(2)由平面
平面
,
,得
平面
.進(jìn)一步得到
.求解三角形證明
.再由線面垂直的判定可得
平面
;
(3)證明
面
,可得線段
為三棱錐
底面
的高,然后利用等積法求三棱錐
的體積.
(1)在如圖的等腰梯形
內(nèi),
![]()
過
作
的垂線,垂足為
,
∵
,
∴
,
又∵
,
,
,
∴ 四邊形
為正方形,且
,
為
中點(diǎn).
在如圖中,
![]()
連結(jié)
,
∵ 點(diǎn)
是
的中點(diǎn),
∴
.
又∵
,
,
,
平面
,
,
平面
,
∴ 平面
平面
,
又∵
面
,
∴
平面
;
(2)∵ 平面
平面
,
平面
平面
,
,
平面
,
∴
平面
.
又∵
平面
,
∴
.
又
,
,
,滿足
,
∴
.
又
,
平面
;
(3)∵
,
,
,
∴
面
.
又線段
為三棱錐
底面
的高,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國道路交通安全法》第
條規(guī)定:所有主干道路凡機(jī)動(dòng)車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以
元罰款,記
分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的
個(gè)月內(nèi),機(jī)動(dòng)車駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 |
|
|
|
|
|
違章駕駛員人數(shù) |
|
|
|
|
|
(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)
與月份
之間的回歸直線方程
;
(Ⅱ)預(yù)測該路段
月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn)
.
(1) 求過
三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;
(2)求過點(diǎn)
與條件 (1) 的圓相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識(shí)競賽為主的《中國詩詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了
名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.
![]()
(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的
列聯(lián)表,并據(jù)此資料你是否有
的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀 | 合格 | 合計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
合計(jì) |
注:
,其中
.
|
|
|
|
|
|
|
|
(2)若參賽選手共
萬人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,則當(dāng)φ取最小的值時(shí),g(0)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量
(噸)與相應(yīng)的生產(chǎn)能耗
(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
|
|
|
|
|
|
|
|
|
|
(1)求![]()
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)1求出的線性同歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(附:
,
,
,
,其中
,
為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造
、
型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張
、
型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張
、
型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com