【題目】設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時,f(x)是單調(diào)函數(shù),則滿足f(x)=f(
)的所有x之和為( )
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034
【答案】B
【解析】解::∵f(x)為偶函數(shù),且當(dāng)x>0時f(x)是單調(diào)函數(shù),∵f(x)=f(
),
∴x=
,或﹣x=
,
∴x2+2015x﹣2015=0或x2+2017x+2015=0,
此時x1+x2=﹣2015,或x3+x4=﹣2017,
∴滿足f(x)=f(
)的所有x之和為﹣2015﹣2017=﹣4032,
故選:B.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:車輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:
租用單車數(shù)量 | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:
,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1)(備注:
,
稱為相應(yīng)于點(diǎn)
的殘差(也叫隨機(jī)誤差));
租用單車數(shù)量 | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 |
| 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 | |||
②分別計算模型甲與模型乙的殘差平方和
及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)“2015年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報” 中公布的數(shù)據(jù),從2011 年到2015 年,我國的
第三產(chǎn)業(yè)在
中的比重如下:
年份 |
|
|
|
|
|
年份代碼 |
|
|
|
|
|
第三產(chǎn)業(yè)比重 |
|
|
|
|
|
(1)在所給坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)建立第三產(chǎn)業(yè)在
中的比重
關(guān)于年份代碼
的回歸方程;
(3)按照當(dāng)前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在
中的比重.
附注: 回歸直線方程
中的斜率和截距的最小二乘估計公式分別為:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處切線方程為y=3x+b,求a,b的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值;
(3)設(shè)g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)
,定直線
,動點(diǎn)
到點(diǎn)
的距離與到直線
的距離之比等于
.
(1)求動點(diǎn)
的軌跡
的方程;
(2)設(shè)軌跡
與
軸負(fù)半軸交于點(diǎn)
,過點(diǎn)
作不與
軸重合的直線交軌跡
于兩點(diǎn)
,直線
分別交直線
于點(diǎn)
.試問:在
軸上是否存在定點(diǎn)
,使得
?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取
人做調(diào)查,得到如下
列聯(lián)表:
![]()
已知在這
人中隨機(jī)抽取一人抽到喜歡游泳的學(xué)生的概率為
,
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整,并判斷是否有
%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(Ⅱ)針對問卷調(diào)查的
名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取
人成立游泳科普知識宣傳組,并在這
人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式:
,其中
.參考數(shù)據(jù):
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=
,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在直線2x-3y-1=0上的圓與x軸交于A(1,0),B(3,0)兩點(diǎn),則圓的方程為( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2
cos2x﹣
.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b=
,f(A﹣
)=
,求角C.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com