【題目】在△ABC中,∠A,∠B,∠C的對(duì)邊分別為
,
,
,若
,
(1)求∠B的大;
(2)若
,
,求△ABC的面積.
【答案】(1)
(2)![]()
【解析】試題分析:(1)根據(jù)正弦定理得:
,解出
代入到已知條件中,利用兩角和的正弦函數(shù)的公式及三角形的內(nèi)角和定理化簡(jiǎn),得到
的值,然后利用特殊角的三角函數(shù)值求出
即可;(2)要求三角形的面積,由三角形的面積公式
知需求
的積及
,由前一問(wèn)的
的值利用同角三角函數(shù)間的基本關(guān)系求出
,可根據(jù)余弦定理及
可得到
的值,即可求出三角形的面積.
試題解析:(1)由已知及正弦定理可得sin Bcos C=2sin Acos B-cos Bsin C,
∴ 2sin Acos B=sin Bcos C+cos Bsin C=sin(B+C).
又在三角形ABC中,sin(B+C)=sin A≠0,
∴ 2sin Acos B=sin A,即cos B=
,B=
.
(2)∵ b2=7=a2+c2-2accos B,∴ 7=a2+c2-ac,
又 (a+c)2=16=a2+c2+2ac,∴ ac=3,∴ S△ABC=
acsin B,
即S△ABC=
3
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)O和點(diǎn)F2(﹣
,0)分別為雙曲線
=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù)
,使得函數(shù)
在
上的最小值為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓E:
+
=1(a>b>0)的左頂點(diǎn)A(﹣2,0),且點(diǎn)(﹣1,
)在橢圓上,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).過(guò)點(diǎn)A作斜率為k(k>0)的直線交橢圓E于另一點(diǎn)B,直線BF2交橢圓E于點(diǎn)C.![]()
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若△CF1F2為等腰三角形,求點(diǎn)B的坐標(biāo);
(3)若F1C⊥AB,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:
與
軸相切.
(1)求
的值;
(2)求圓M在
軸上截得的弦長(zhǎng);
(3)若點(diǎn)
是直線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
與圓M相切,
為切點(diǎn),求四邊形
面積的最小值.
【答案】(1)
(2)
(3) ![]()
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令
,得到關(guān)于
的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1)
∵圓M:
與
軸相切
∴
∴
(2) 令
,則
∴
∴
(3) ![]()
∵
的最小值等于點(diǎn)
到直線
的距離,
∴
∴![]()
∴四邊形
面積的最小值為
.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系
中,圓
的方程為
,且圓
與
軸交于
,
兩點(diǎn),設(shè)直線
的方程為
.
![]()
(1)當(dāng)直線
與圓
相切時(shí),求直線
的方程;
(2)已知直線
與圓
相交于
,
兩點(diǎn).
(ⅰ)若
,求實(shí)數(shù)
的取值范圍;
(ⅱ)直線
與直線
相交于點(diǎn)
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數(shù)
,使得
恒成立?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=
,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°.
(1)若PB=
,求PA;
(2)若∠APB=150°,求tan∠PBA.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且
時(shí),總有
成立.
求a的值;
判斷并證明函數(shù)
的單調(diào)性;
求
在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用 (基準(zhǔn)保費(fèi))統(tǒng)一為
元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強(qiáng)險(xiǎn)第二年價(jià)格計(jì)算公式具體如下:交強(qiáng)險(xiǎn)最終保費(fèi)
基準(zhǔn)保費(fèi)
(
浮動(dòng)比率
).發(fā)生交通事故的次數(shù)越多,出險(xiǎn)次數(shù)的就越多,費(fèi)率也就越髙,具體浮動(dòng)情況如下表:
![]()
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險(xiǎn)次數(shù),得到下面的柱狀圖:
![]()
已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費(fèi)用為
元.
(1)記
為事件“
”,求
的估計(jì)值;
(2)求
的平均估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量
與
平行.
(1)求A;
(2)若
,b=2,求△ABC的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com