定義在R上的函數(shù)滿足以下三個條件:
①對任意的x∈R,都有f(x+4)=f(x);
②對任意的x1,x2∈[0,2]且x1<x2,都有f(x1)<f(x2);
③函數(shù)f(x+2)的圖象關(guān)于y軸對稱,
則下列結(jié)論正確的是( )
A.f(4.5)<f(7)<f(6.5)
B.f(7)<f(4.5)<f(6.5)
C.f(7)<f(6.5)<f(4.5)
D.f(4.5)<f(6.5)<f(7)
【答案】分析:錯誤:③函數(shù)f(x+2)的圖象關(guān)于Y軸對稱,應(yīng)該是:③函數(shù)f(x+2)的圖象關(guān)于y軸對稱.
由條件可得,函數(shù)f(x)是周期等于4的周期函數(shù),且函數(shù)在[0,2]上是增函數(shù),在[2,4]上是減函數(shù).
根據(jù)f(4.5)=f(0.5),f(7)=f(1),f(6.5)=f(1.5),再利用函數(shù)在[0,2]上是增函數(shù)可得結(jié)論.
解答:解:由①可得函數(shù)的圖象關(guān)于直線x=4對稱;,由②可得函數(shù)在[0,2]上是增函數(shù);
由③可得函數(shù)f(x+2)為偶函數(shù),故f(2-x)=f(2+x),故函數(shù)f(x)的圖象關(guān)于直線x=2對稱.
綜上可得,函數(shù)f(x)是周期等于4的周期函數(shù),且函數(shù)在[0,2]上是增函數(shù),在[2,4]上是減函數(shù).
再由 f(4.5)=f(0.5),f(7)=f(3)=f(2+1)=f(2-1)=f(1),
f(6.5)=f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5),
故有 f(4.5)<f(7)<f(6.5),
故選A.
點評:本題主要考查函數(shù)的奇偶性、單調(diào)性、周期性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.