【題目】設(shè)函數(shù)
在(t,10﹣t2)上有最大值,則實(shí)數(shù)t的取值范圍為( )
A.![]()
B.![]()
C.[﹣2,1)
D.(﹣2,1)
【答案】C
【解析】解:由
,得f′(x)=﹣x2+1, 由f′(x)=0,得x=±1.
當(dāng)x∈(﹣∞,﹣1)∪(1,+∞)時(shí),f′(x)<0,
∴f(x)的減區(qū)間為(﹣∞,﹣1),(1,+∞);
當(dāng)x∈(﹣1,1)時(shí),f′(x)>0,
∴f(x)的增區(qū)間為(﹣1,1).
∴x=1時(shí),f(x)取得極大值,
要使函數(shù)f(x)=
在(t,10﹣t2)上有最大值,
則
,即
,
解得:﹣2≤t<1.
∴實(shí)數(shù)t的取值范圍為[﹣2,1).
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最大(小)值與導(dǎo)數(shù),掌握求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個(gè)最大值,最小的是最小值即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班制定了數(shù)學(xué)學(xué)習(xí)方案:星期一和星期日分別解決
個(gè)數(shù)學(xué)問題,且從星期二開始,每天所解決問題的個(gè)數(shù)與前一天相比,要么“多一個(gè)”要么“持平”要么“少一個(gè)”,則在一周中每天所解決問題個(gè)數(shù)的不同方案共有( )
A.
種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長(zhǎng)為1(單位:
)的正方體木塊經(jīng)過適當(dāng)切割,得到幾何體
,已知幾何體
由兩個(gè)底面相同的正四棱錐組成,底面
平行于正方體的下底面,且各頂點(diǎn)均在正方體的面上,則幾何體
體積的取值范圍是________(單位:
).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題: ![]()
(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形
(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)
處,然后通過擲骰子來確定棋子沿正方形的邊按逆時(shí)針方向行走的單位,如果擲出的點(diǎn)數(shù)為
,則棋子就按逆時(shí)針方向行走
個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)
處的所有不同走法共有( )
![]()
A. 22種 B. 24種 C. 25種 D. 27種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓
:
上有一動(dòng)點(diǎn)
,
到橢圓
的兩焦點(diǎn)
,
的距離之和等于
,
到直線
的最大距離為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)
的直線
與橢圓
交于不同兩點(diǎn)
、
,
(
為坐標(biāo)原點(diǎn))且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點(diǎn),且M、N關(guān)于直線x+y=0對(duì)稱,則不等式組:
表示的平面區(qū)域的面積是( )
A.![]()
B.![]()
C.1
D.2
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com