【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,點(diǎn)
是曲線
上的動(dòng)點(diǎn),點(diǎn)
在
的延長線上,且
,點(diǎn)
的軌跡為
.
(1)求直線
及曲線
的極坐標(biāo)方程;
(2)若射線
與直線
交于點(diǎn)
,與曲線
交于點(diǎn)
(與原點(diǎn)不重合),求
的最大值.
【答案】(1)直線l的極坐標(biāo)方程為
.
的極坐標(biāo)方程為![]()
(2)![]()
【解析】
(1)消參可得直線的普通方程,再利用公式把極坐標(biāo)方程與直角坐標(biāo)方程進(jìn)行轉(zhuǎn)化,從而得到直線的極坐標(biāo)方程;利用相關(guān)點(diǎn)法求得曲線
的極坐標(biāo)方程;
(2)利用極坐標(biāo)中極徑的意義求得長度,再把所求變形成正弦型函數(shù),進(jìn)一步求出結(jié)果.
(1)消去直線l參數(shù)方程中的t,得
,
由
,得直線l的極坐標(biāo)方程為
,
故
.
由點(diǎn)Q在OP的延長線上,且
,得
,
設(shè)
,則
,
由點(diǎn)P是曲線
上的動(dòng)點(diǎn),可得
,即
,
所以
的極坐標(biāo)方程為
.
(2)因?yàn)橹本l及曲線
的極坐標(biāo)方程分別為
,
,
所以
,
,
所以
,
所以當(dāng)
時(shí),
取得最大值,為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,
平面
,四邊形
為等腰梯形,
,
.
![]()
(1)求證:平面
平面
;
(2)已知
為
中點(diǎn),求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為
,設(shè)地鐵在AB部分的總長度為
.
按下列要求建立關(guān)系式:
設(shè)
,將y表示成
的函數(shù);
設(shè)
,
用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ) 求曲線
在點(diǎn)
處的切線方程;
(Ⅱ) 討論函數(shù)
的單調(diào)性;
(Ⅲ) 設(shè)
,當(dāng)
時(shí),若對(duì)任意的
,存在
,使得
≥
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(t,t
1),t∈R,點(diǎn)E是圓
上的動(dòng)點(diǎn),點(diǎn)F是圓
上的動(dòng)點(diǎn),則|PF|
|PE|的最大值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點(diǎn)F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH
.
(1)求屋頂面積S關(guān)于
的函數(shù)關(guān)系式;
(2)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價(jià)與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問:當(dāng)
為何值時(shí),總造價(jià)最低?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a4=2,S6=18.
(1)求an;
(2)設(shè)Tn=|a1|+|a2|+…+|an|,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為
為參數(shù)
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ
若直線
與曲線C交于點(diǎn)
不同于原點(diǎn)
,與直線l交于點(diǎn)B,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在
上的函數(shù)
及如下的4個(gè)命題:
關(guān)于x的方程
有
個(gè)不同的零點(diǎn);
對(duì)于實(shí)數(shù)
,不等式
恒成立;
在
上,方程
有5個(gè)零點(diǎn);
時(shí),函數(shù)
的圖象與x軸圖成的形的面積是4.
則以上命題正確的為______
把正確命題前的序號(hào)填在橫線上![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com