【題目】設(shè)函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)若對(duì)于任意的x∈[0,
],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間
上有兩個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:當(dāng)a=0時(shí),f(x)=xex,f′(x)=ex(x+1),
令f′(x)=0,得x=﹣1,
列表如下:
x | (﹣∞,﹣1) | ﹣1 | (﹣1,+∞) |
f′(x) | + | 0 | ﹣ |
f(x) | ↘ | 極小值 | ↗ |
所以函數(shù)f(x)的極小值為
,無(wú)極大值
(2)解:①當(dāng)a≤0時(shí),由于對(duì)于任意
,有sinxcosx≥0,
所以f(x)≥0恒成立,當(dāng)a≤0時(shí),符合題意;
②當(dāng)0<a≤1時(shí),因?yàn)閒′(x)≥ex(x+1)﹣acos2x≥e0(0+1)﹣acos0=1﹣a≥0,
所以函數(shù)f(x)在
上為增函數(shù),所以f(x)≥f(0)=0,即當(dāng)0<a≤1,符合題意;
③當(dāng)a>1時(shí),f′(0)=1﹣a<0,
,
所以存在
,使得f′(α)=0,且在(0,α)內(nèi),f′(x)<0,
所以f(x)在(0,α)上為減函數(shù),所以f(x)<f(0)=0,
即當(dāng)a>1時(shí),不符合題意,
綜上所述,a的取值范圍是(﹣∞,1]
(3)解:不存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間
上有兩個(gè)零點(diǎn),
由(2)知,當(dāng)a≤1時(shí),f(x)在
上是增函數(shù),且f(0)=0,
故函數(shù)f(x)在區(qū)間
上無(wú)零點(diǎn),
當(dāng)a>1時(shí),f′(x)≥ex(x+1)﹣acos2x,
令g(x)=ex(x+1)﹣acos2x,g′(x)=ex(x+2)+2asin2x
當(dāng)
時(shí),恒有g(shù)′(x)>0,所以g(x)在
上是增函數(shù),
由
,
故g(x)在
上存在唯一的零點(diǎn)x0,即方程f′(x)=0在
上存在唯一解x0,
且當(dāng)x∈(0,x0)時(shí),f′(x)<0,當(dāng)
,f′(x)>0,
即函數(shù)f(x)在(0,x0)上單調(diào)遞減,在
上單調(diào)遞增,
當(dāng)x∈(0,x0)時(shí),f(x)<f(0)=0,即f(x)在(0,x0)無(wú)零點(diǎn);
當(dāng)
時(shí),
,
所以f(x)在
上有唯一零點(diǎn),
所以,當(dāng)a>1時(shí),f(x)在
上有一個(gè)零點(diǎn),
綜上所述,不存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間
上有兩個(gè)零點(diǎn)
【解析】(1)將a=0代入f(x),求出函數(shù)的導(dǎo)數(shù),列出表格,求出函數(shù)的極值即可;(2)通過(guò)討論a的范圍,求出函數(shù)的導(dǎo)數(shù),確定函數(shù)的單調(diào)區(qū)間,從而確定a的范圍即可;(3)求出當(dāng)a≤1時(shí),函數(shù)f(x)在區(qū)間
上無(wú)零點(diǎn),a>1時(shí),求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性得到f(x)在
上有一個(gè)零點(diǎn),從而判斷結(jié)論即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個(gè)最大值,最小的是最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)
,求實(shí)數(shù)m的值,使得復(fù)數(shù)z分別是:
(1)0;(2)虛數(shù);(3)純虛數(shù);(4)復(fù)平面內(nèi)第二、四象限角平分線(xiàn)上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓
=1(a>b>0)的離心率為
,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)A作直線(xiàn)l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q. ![]()
(1)若直線(xiàn)l的斜率為
,求
的值;
(2)若
=λ
,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一個(gè)階段的學(xué)習(xí)提出指導(dǎo)性建議,某老師現(xiàn)對(duì)他前7次考試的數(shù)學(xué)成績(jī)x、物理成績(jī)y進(jìn)行分析.下面是該學(xué)生7次考試的成績(jī).
![]()
(1)他的數(shù)學(xué)成績(jī)與物理成績(jī)哪個(gè)更穩(wěn)定?請(qǐng)給出你的證明.
(2)已知該學(xué)生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線(xiàn)性相關(guān)的,若該學(xué)生的物理成績(jī)達(dá)到115分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績(jī)大約是多少?并請(qǐng)你根據(jù)物理成績(jī)與數(shù)學(xué)成績(jī)的相關(guān)性,給出該學(xué)生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點(diǎn).
![]()
(1)證明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在長(zhǎng)方形ABCD中,對(duì)角線(xiàn)AC與兩鄰邊所成的角分別為α,β,則cos2α+cos2β=1,則在立體幾何中,給出類(lèi)比猜想并證明.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“
或
”是假命題,則“
且
”是真命題;
②命題“若
,則
或
”為真命題;
③若
,則
!
④直線(xiàn)
與雙曲線(xiàn)
交于
,
兩點(diǎn),若
,則這樣的直線(xiàn)有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點(diǎn). ![]()
(1)與BC平行的平面PDE交AC于點(diǎn)E,判斷點(diǎn)E在AC上的位置并說(shuō)明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠要建造一個(gè)長(zhǎng)方體的無(wú)蓋箱子,其容積為48 m3,高為3 m,如果箱底每平方米的造價(jià)為15元,箱側(cè)面每平方米的造價(jià)為12元,則箱子的最低總造價(jià)為( )
A. 900元 B. 840元
C. 818元 D. 816元
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com