分析 (1)判斷f′(x)的符號(hào),得出f(x)的單調(diào)性,從而求出f(x)的最值;
(2)令g(x)=$\frac{cosx}{x}$,判斷g(x)的單調(diào)性,求出g(x)的最值即可得出a,b的范圍.
解答 解:(1)f'(x)=xcosx,
∴當(dāng)$x∈(-\frac{π}{2},0)$時(shí)f'(x)<0,當(dāng)$x∈(0,\frac{π}{2})$時(shí)f'(x)>0,
∴f(x)在[-$\frac{π}{2}$,0]上單調(diào)遞減,在(0,$\frac{π}{2}$]上單調(diào)遞增,
∴f(x)的最小值為f(0)=1,
又$f(\frac{π}{2})=f(-\frac{π}{2})=\frac{π}{2}$,∴f(x)的最大值為$\frac{π}{2}$.
(2)設(shè)$g(x)=\frac{cosx}{x}$,則$g'(x)=\frac{-xsinx-cosx}{x^2}$,
由(I),當(dāng)$x∈(\frac{π}{3},\frac{π}{2})$時(shí)xsinx+cosx>0,因而g'(x)<0,
∴$g(x)=\frac{cosx}{x}$在$x∈(\frac{π}{3},\frac{π}{2})$上單調(diào)遞減,
又g($\frac{π}{2}$)=0,g($\frac{π}{3}$)=$\frac{3}{2π}$,
∴$0<g(x)<\frac{3}{2π}$,∵$a<\frac{cosx}{x}<b$恒成立,
∴$a≤0,b≥\frac{3}{2π}$.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,導(dǎo)數(shù)最值的計(jì)算,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 7 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,$\frac{3}{2}$] | B. | [-$\frac{3}{2}$,+∞) | C. | [$\frac{3}{2}$,+∞) | D. | (-∞,-$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com