【題目】已知橢圓C:
,(a>b>0)過點(diǎn)(1,
)且離心率為
.
![]()
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右頂點(diǎn)為P,過定點(diǎn)(2,﹣1)的直線l:y=kx+m與橢圓C相交于異于點(diǎn)P的A,B兩點(diǎn),若直線PA,PB的斜率分別為k1,k2,求k1+k2的值.
【答案】(1)
;(2)1
【解析】
(1)根據(jù)題意列出關(guān)于
滿足的關(guān)系式再求解即可.
(2)聯(lián)立直線
與橢圓的方程,再設(shè)A(x1,y1),B(x2,y2),P(2,0),進(jìn)而表達(dá)出直線PA,PB的斜率,再利用韋達(dá)定理化簡求解即可.
(1)由題意可得
,解得a2=4,b2=1,
則橢圓的方程為
y2=1,
(2)由題意,過定點(diǎn)(2,﹣1)的直線l:y=kx+m,
∴﹣1=2k+m,
∴m=﹣2k﹣1
A(x1,y1),B(x2,y2),P(2,0)
聯(lián)立
得(1+4k2)x2+8kmx+4m2﹣4=0.
△=64k2m2﹣4(1+4k2)(4m2﹣4)=16(4k2﹣m2+1)>0.
∴x1+x2
,x1x2![]()
∵直線PA,PB的斜率分別為k1,k2,
∴k1+k2![]()
k
k
2k
2k
2k﹣(2k﹣1)=1
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
為正三角形,
為棱
的中點(diǎn),
,
,平面
平面![]()
![]()
(1)求證:平面
平面
;
(2)若
是棱
上一點(diǎn),
與平面
所成角的正弦值為
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,點(diǎn)![]()
(1)求點(diǎn)
與拋物線
的焦點(diǎn)
的距離;
(2)設(shè)斜率為
的直線
與拋物線
交于
兩點(diǎn),若
的面積為
,求直線
的方程;
(3)是否存在定圓
,使得過曲線
上任意一點(diǎn)
作圓
的兩條切線,與曲線
交于另外兩點(diǎn)
時(shí),總有直線
也與圓
相切?若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紀(jì)念章從某年某月某日起開始上市,通過市場調(diào)査,得到該紀(jì)念章每
枚的市場價(jià)
(單位:元)與上市時(shí)間
(單位:天)的數(shù)據(jù)如下:
上市時(shí)間 |
|
|
|
市場價(jià) |
|
|
|
(1)根據(jù)上表數(shù)計(jì),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)
與上市時(shí)間
的變化關(guān)系并說明理由:①
;②
;③
;④
;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列
的前
項(xiàng)和為
,若
,
.
(1)證明:當(dāng)
時(shí),
;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
,且
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
與函數(shù)
在公共點(diǎn)
處有相同的切線,且
在
上恒成立.
(i)求
和
的值;(
為函數(shù)
的導(dǎo)函數(shù))
(ii)求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家每年都會(huì)對中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項(xiàng)目之一.今年某小學(xué)對本校六年級300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個(gè)數(shù)最低為10,最高為189.現(xiàn)將跳繩個(gè)數(shù)分成
,
,
,
,
,
6組,并繪制出如下的頻率分布直方圖.
![]()
(1)若一分鐘跳繩個(gè)數(shù)達(dá)到160為優(yōu)秀,求該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級部門要對該校體質(zhì)監(jiān)測情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
.試估計(jì)此校六年級男生一分鐘跳繩個(gè)數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時(shí),
,則下列命題正確的是( )
A.當(dāng)
時(shí),![]()
B.函數(shù)
有3個(gè)零點(diǎn)
C.
的解集為![]()
D.
,都有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有一組圓
,下列四個(gè)命題:①存在一條定直線與所有的圓均相切;②存在一條定直線與所有的圓均相交;③存在一條定直線與所有的圓均不相交;④所有的圓均不經(jīng)過原點(diǎn);其中真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com