【題目】在四棱錐
中,底面
為正方形,
.
![]()
(1)證明:面
⊥面
;
(2)若
與底面
所成的角為
,
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析;(2)![]()
【解析】
(1)要證面面垂直,一般先證線面垂直,設(shè)AC與BD交點(diǎn)為O,則PO⊥BD,而正方形中AC⊥BD,于是可證得結(jié)論.
(2)由線面角的定義可得
,以A為坐標(biāo)原點(diǎn),
為x,y軸的正方向建立空間直角坐標(biāo)系,然后寫(xiě)出各點(diǎn)坐標(biāo),求出面BPC和面DPC的法向量,再由法向量的夾角的余弦值得二面角的余弦.
(1)證明:連接AC,BD交點(diǎn)為O,∵四邊形ABCD為正方形,∴![]()
∵
,
,∴
,又∵
,∴![]()
又
,∴
.
(2)∵
,過(guò)點(diǎn)P做
,垂足為E
∴
∵PA與底面ABCD所成的角為
,∴
,
又
,設(shè)
,則
如圖所示,以A為坐標(biāo)原點(diǎn),
為x,y軸的正方向建立空間直角坐標(biāo)系![]()
![]()
設(shè)面
法向量為,
![]()
,∴
,
,∴![]()
同理
的法向量
,![]()
∴求二面角
的余弦值![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,使用紙板可以折疊粘貼制作一個(gè)形狀為正六棱柱形狀的花型鎖盒蓋的紙盒. ![]()
(1)求該紙盒的容積;
(2)如果有一張長(zhǎng)為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個(gè)這樣的紙盒(紙盒必須用一張紙板制成).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程
,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.
(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};
(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程
,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.
(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};
(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,則該算法的功能是( ) ![]()
A.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓C:
=1(a>b>0)的焦點(diǎn)F1 , F2 , 過(guò)右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長(zhǎng)為短軸長(zhǎng)的2
倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車(chē)銷售商專門(mén)銷售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5 000元,一輛非事故車(chē)盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷售商店內(nèi)有6輛(車(chē)齡已滿三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選2輛車(chē),求這2輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+
)cosx.
(1)若0≤x≤
,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A為銳角且f(A)=
,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(
)=2
.
(Ⅰ)求曲線C和直線l在該直角坐標(biāo)系下的普通方程;
(Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P的坐標(biāo)為(﹣2,2),求|PB|+|AB|的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com