【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,BC∥AD,AB⊥BC,∠ADC=45°,PA⊥平面ABCD,AB=AP=1,AD=3.
![]()
(1)求異面直線PB與CD所成角的大;
(2)求點(diǎn)D到平面PBC的距離.
【答案】(1)
; (2)見(jiàn)解析.
【解析】
(1)建立空間直角坐標(biāo)系,利用向量法求異面直線PB與CD所成角大小.
(2)求出平面PBC的一個(gè)法向量,利用向量法的距離公式求點(diǎn)D到平面PBC的距離.
(1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立如圖所示空間直角坐標(biāo)系,
則P(0,0,1),B(1,0,0),C(1,2,0)D(0,3,0),
∴
=(1,0,﹣1),
=(﹣1,1,0),
設(shè)異面直線PB與CD所成角為θ,
則cosθ=
,
所以異面直線PB與CD所成角大小為
.
(2)設(shè)平面PBC的一個(gè)法向量為
=(x,y,z),
=(1,0,﹣1),
=(0,2,0),
=(﹣1,1,0),
則
,取x=1,得
=(1,0,1),
∴點(diǎn)D到平面PBC的距離d=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,近日我漁船編隊(duì)在島
周?chē)S蜃鳂I(yè),在島
的南偏西20°方向有一個(gè)海面觀測(cè)站
,某時(shí)刻觀測(cè)站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測(cè)得與
相距31海里的
處有一艘海警船巡航,上級(jí)指示海警船沿北偏西40°方向,以40海里/小時(shí)的速度向島
直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)
處,此時(shí)觀測(cè)站測(cè)得
間的距離為21海里.
![]()
(Ⅰ)求
的值;
(Ⅱ)試問(wèn)海警船再向前航行多少分鐘方可到島
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地沿某條公路行駛一共200公里,遇到紅燈個(gè)數(shù)的概率如下表所示:
紅燈個(gè)數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6個(gè)及6個(gè)以上 |
概率 | 0.02 | 0.1 |
| 0.35 | 0.2 | 0.1 | 0.03 |
(1)求表中字母
的值;
(2)求至少遇到4個(gè)紅燈的概率;
(3)求至多遇到5個(gè)紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)對(duì)設(shè)備進(jìn)行技術(shù)升級(jí)改造,為了檢驗(yàn)改造效果,現(xiàn)從設(shè)備改造后生產(chǎn)的大量產(chǎn)品中抽取了100件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,統(tǒng)計(jì)整理為如圖所示的頻率分布直方圖:
![]()
(1)估計(jì)該企業(yè)所生產(chǎn)產(chǎn)品的質(zhì)量指標(biāo)的平均數(shù)和中位數(shù)(中位數(shù)保留一位小數(shù));
(2)若產(chǎn)品的質(zhì)量指標(biāo)在
內(nèi),則該產(chǎn)品為殘次品,生產(chǎn)并銷(xiāo)售一件殘次品該企業(yè)損失1萬(wàn)元;若產(chǎn)品的質(zhì)量指標(biāo)在
范圍內(nèi),則該產(chǎn)品為特優(yōu)品,生產(chǎn)一件特優(yōu)品該企業(yè)獲利3萬(wàn)元.把樣本中的殘次品和特優(yōu)品取出合并在一起,在從中任取2件產(chǎn)品進(jìn)行銷(xiāo)售,那么該企業(yè)收入為多少萬(wàn)元的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓M:
的離心率與雙曲線
的離心率互為倒數(shù),且內(nèi)切于圓
。
(1)求橢圓M的方程;
(2)已知
,
是橢圓M的下焦點(diǎn),在橢圓M上是否存在點(diǎn)P,使
的周長(zhǎng)最大?若存在,請(qǐng)求出
周長(zhǎng)的最大值,并求此時(shí)
的面積;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列{an},記T={x|x=aj﹣ai,i<j},若數(shù)列{an}滿(mǎn)足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*,m>k),必有am+1﹣ak+1=t”,則稱(chēng)數(shù)列具有性質(zhì)P(t).
(1)若數(shù)列{an}滿(mǎn)足
,判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?說(shuō)明理由;
(2)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(3)已知{bn}是各項(xiàng)均為正整數(shù)的數(shù)列,且{bn}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在正整數(shù)N,使得aN,aN+1,aN+2,…,aN+K,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,a
R.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】試證明:集合
滿(mǎn)足
(1)對(duì)每個(gè)
及
,若
,則
一定不是
的倍數(shù);
(2)對(duì)每個(gè)
(
表示
在
中的補(bǔ)集),且
,必存在
,
,使
是
的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
及圓
.
(1)若直線
過(guò)點(diǎn)
且被圓
截得的線段長(zhǎng)為
,求
的方程;
(2)求過(guò)
點(diǎn)的圓
的弦的中點(diǎn)
的軌跡方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com