分析 (Ⅰ) 設(shè)4個(gè)球中紅球個(gè)數(shù)為ξ,即ξ=1,可能來自甲盒,也可能來自乙盒,由此能求出取出的4個(gè)球中恰有1個(gè)紅球的概率.
(Ⅱ)4個(gè)球中的紅球個(gè)數(shù)ξ不超過2個(gè),則ξ可以是0個(gè),1個(gè),2個(gè),分別求出Pp(ξ=0),P(ξ=1),P(ξ=2),由此能求出P(ξ≤2).
(Ⅲ)ξ的可能取值為0,1,2,3,…9′
由(Ⅰ)分別求出:p(ξ=0),p(ξ=1),p(ξ=2),p(ξ=3),由此能求出ξ的分布列和數(shù)學(xué)期望.
解答 解:(Ⅰ) 設(shè)4個(gè)球中紅球個(gè)數(shù)為ξ,即ξ=1,可能來自甲盒,也可能來自乙盒
∴p(ξ=1)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{4}^{2}}•\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$+$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}•\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{7}{15}$.…4′
(Ⅱ)4個(gè)球中的紅球個(gè)數(shù)ξ不超過2個(gè),則ξ可以是0個(gè),1個(gè),2個(gè)
p(ξ=0)=$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$,
p(ξ=1)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{4}^{2}}•\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$+$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}•\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{7}{15}$,
p(ξ=2)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{4}^{2}}$•$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$+$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}•\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{3}{10}$,
∴p(ξ≤2)=$\frac{1}{5}+\frac{7}{15}+\frac{3}{10}=\frac{29}{30}$.…8′
(Ⅲ)ξ的可能取值為0,1,2,3,…9′
由(Ⅰ)(Ⅱ)知:p(ξ=0)=$\frac{1}{5}$,p(ξ=1)=$\frac{7}{15}$,p(ξ=2)=$\frac{3}{10}$,
而p(ξ=3)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{4}^{2}}•\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{30}$,…10′
∴ξ的分布列為:
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{7}{15}$ | $\frac{3}{10}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題之一.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [1,2] | B. | (1,2+$\frac{1}{{e}^{2}}$] | C. | (1+$\frac{1}{e}$,3) | D. | (2,4+e] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-$\frac{{a}_{1}}{_{1}}$)(-$\frac{{a}_{2}}{_{2}}$)=-1 | B. | (a1,b1)•(a2,b2)=0 | ||
| C. | -$\frac{{a}_{1}}{_{1}}$=$\frac{_{2}}{{a}_{2}}$ | D. | a1b2=a2b1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com