欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.如圖所示,已知圓(x+3)2+y2=100,定點A(3,0),M為圓C上一動點,點P在AM上,點N在CM上,且滿足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)求過點Q(2,1)的弦的中點的軌跡方程.

分析 (1)通過向量關(guān)系,判斷點N的軌跡為曲線E.滿足橢圓定義,然后求解橢圓的方程即可.
(2)利用點差法求斜率,即可求過點Q(2,1)的弦的中點的軌跡方程.

解答 解:(1)∵$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,
∴NP為AM的中垂線,
∴|NA|=|NM|.
又∵|CN|+|NM|=10,∴|CN|+|NA|=10>6,
∴動點N的軌跡是以點C和A為焦點的橢圓,且2a=10,
∴曲線E的方程為:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$;
(2)設(shè)直線與橢圓交與G(x1,y1)、H(x2,y2)兩點,中點為S(x,y),
設(shè)弦的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{16({x}_{1}+{x}_{2})}{25({y}_{1}+{y}_{2})}$=-$\frac{16x}{25y}$,
由S(x,y),Q(2,1)兩點可得弦的斜率為k=$\frac{y-1}{x-2}$,
∴-$\frac{16x}{25y}$=$\frac{y-1}{x-2}$,化簡可得中點的軌跡方程為:16x2+25y2-32x-25y=0.

點評 本題考查橢圓的定義的應(yīng)用,軌跡方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)對任意x∈R都有f(x+2)=-f(x),且y=f(x-1)的圖象關(guān)于點(1,0)對稱,當x∈(0,2)時f(x)=2x2,則f(2015)=(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.$\frac{1+2i}{(1-i)^{2}}$=$-1+\frac{i}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.a(chǎn)是f(x)=2x-log$\frac{1}{2}$x的零點,若k>a,則f(k)的值滿足( 。
A.f(k)=0B.f(k)<0C.f(k)>0D.f(k)的符號不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x+k•2-x,k∈R
①若函數(shù)f(x)為奇函數(shù),求實數(shù)k的值.
②若k>0時f(x)min=2,求函數(shù)g(x)=ksinx+cosx的值域.
對任意的x∈[0,+∞)都有f(x)>2-x成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,A=45°,C=105°,BC=$\sqrt{2}$,則AC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)等比數(shù)列{an}中,已知a1+a2=324,a3+a4=36,求a5+a6
(2)已知數(shù)列{an}為等差數(shù)列,且a5=11,a8=5,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義$a⊕b=\left\{\begin{array}{l}ab(ab≥0)\\ \frac{a}(ab<0)\end{array}\right.$,設(shè)函數(shù)f(x)=lnx⊕x,若數(shù)列{an}是公比大于0的等比數(shù)列,且a1008=1,f(a1)+f(a2)+f(a3)+…+f(a2015)+f(a2016)=a2016,則a2016=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.判斷函數(shù)f(x)=$\underset{lim}{n→∞}$$\frac{1}{1+{x}^{n}}$(x>0)的間斷點,并指明其類型.(提示:分0<x<1,x=1,x>1討論f(x)的表達式)

查看答案和解析>>

同步練習(xí)冊答案