【題目】如圖,在直角三棱柱
中,
、
分別為
、
的中點(diǎn),
,
.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)若直線
和平面
所成角的正弦值等于
,求二面角
的余弦值.
【答案】(1)見解析;(2)見解析;(3)![]()
【解析】
(1)如圖所示,取AB的中點(diǎn)M,連接MF,利用三角形中位線定理及其培訓(xùn)說不定判定定理可得四邊形MFC1E是平行四邊形,于是C1F∥EM,再利用線面平行的判定定理即可判斷出結(jié)論;
(2)由直三棱柱ABC﹣A1B1C1,可得BB1⊥底面ABC,BB1⊥AB,再利用線面垂直的判定定理面面垂直的判定定理即可證明結(jié)論;
(3)由(2)可知:AB⊥BC.可建立如圖所示的空間直角坐標(biāo)系.求出平面ABE和平面CBE的法向量,代入公式,即可得到結(jié)果.
(1)證明:如圖所示,取AB的中點(diǎn)M,連接MF,
則MF
AC,又EC1
AC,
∴EC1
MF,
∴四邊形MFC1E是平行四邊形,
∴C1F∥EM,又C1F平面ABE;
EM平面ABE;
∴C1F∥平面ABE.
(2)證明:由直三棱柱ABC﹣A1B1C1,∴BB1⊥底面ABC,
∴BB1⊥AB,又C1F⊥AB,BB1與C1F相交,
∴AB⊥平面ABE,又AB平面ABE,
∴平面ABE⊥平面B1BCC1;
(3)解:由(2)可知:AB⊥BC.
因此可建立如圖所示的空間直角坐標(biāo)系.F(0,1,0),設(shè)C1(0,2,t)(t>0),
(0,1,t).
由題意可取平面ACC1A1的法向量為
(1,1,0).
∵直線C1F和平面ACC1A1所成角的正弦值等于
,
∴
|cos
|
,
解得t=2.
∴E(1,1,2),A(2,0,0),C(0,2,0),
(2,0,0),
(1,1,2),
(0,2,0).
設(shè)平面ABE的法向量為
(x,y,z),則![]()
0,
可得:x=0,x+y+2z=0,取y=2,可得:
(0,2,﹣1).
同理可得平面CBE的法向量為
(2,0,﹣1).
∴cos
.
∴二面角A﹣BE﹣C的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的
,且球的表面積也是圓柱表面積的
”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為
,則該圓柱的內(nèi)切球體積為( )
A.
B.
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系x-O-y中,已知曲線E:
(t為參數(shù))
(1)在極坐標(biāo)系O-x中,若A、B、C為E上按逆時(shí)針排列的三個(gè)點(diǎn),△ABC為正三角形,其中A點(diǎn)的極角θ=
,求B、C兩點(diǎn)的極坐標(biāo);
(2)在直角坐標(biāo)系x-O-y中,已知?jiǎng)狱c(diǎn)P,Q都在曲線E上,對(duì)應(yīng)參數(shù)分別為t=α與t=2α (0<α<2π),M為PQ的中點(diǎn),求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
處取得極值,求函數(shù)
在
上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)傳統(tǒng)文化,某市舉辦了“高中生詩詞大賽”,現(xiàn)從全市參加比賽的學(xué)生中隨機(jī)抽取
人的成績(jī)進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,其中成績(jī)的分組區(qū)間為
,
,
,
.
![]()
(1)求頻率分布直方圖中
的值;
(2)在所抽取的
名學(xué)生中,用分層抽樣的方法在成績(jī)?yōu)?/span>
的學(xué)生中抽取了一個(gè)容量為
的樣本,再從該樣本中任意抽取
人,求
人的成績(jī)均在區(qū)間
內(nèi)的概率;
(3)若該市有
名高中生參賽,根據(jù)此次統(tǒng)計(jì)結(jié)果,試估算成績(jī)?cè)趨^(qū)間
內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)
的直線
與橢圓相交另一點(diǎn)
,若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
滿足:對(duì)于其定義域
內(nèi)的任何一個(gè)自變量
,都有函數(shù)值
,則稱函數(shù)
在
上封閉.
(1)若下列函數(shù):
,
的定義域?yàn)?/span>
,試判斷其中哪些在
上封閉,并說明理由.
(2)若函數(shù)
的定義域?yàn)?/span>
,是否存在實(shí)數(shù)
,使得
在其定義域
上封閉?若存在,求出所有
的值,并給出證明;若不存在,請(qǐng)說明理由.
(3)已知函數(shù)
在其定義域
上封閉,且單調(diào)遞增,若
且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐S﹣ABCD中,四邊形ABCD為平行四邊形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求證:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E為線段BC的中點(diǎn),F為線段SB上靠近B的三等分點(diǎn),求直線SC與平面AEF所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:
+
=1(a>b>0)的離心率為
,橢圓上動(dòng)點(diǎn)P到一個(gè)焦點(diǎn)的距離的最小值為3(
-1).
![]()
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 已知過點(diǎn)M(0,-1)的動(dòng)直線l與橢圓C交于A,B兩點(diǎn),試判斷以線段AB為直徑的圓是否恒過定點(diǎn),并說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com