欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知函數(shù)f(x)=x2-ax+1,x∈R.
(1)若f(x)≥0恒成立,求a的取值范圍;
(2)當a∈(0,3),求函數(shù)y=f(x)在x∈[1,2]上的最大值;
(3)任意x1,x2∈[1,2],使得|f(x1)-f(x2)|≤4恒成立,求a的取值范圍.

分析 (1)問題轉化為x2-ax+1≥0對x∈R恒成立,根據(jù)二次函數(shù)的性質求出a的范圍即可;
(2)求出函數(shù)的對稱軸,通過討論a的范圍,求出函數(shù)的單調區(qū)間,從而求出函數(shù)在[1,2]上的最大值即可;
(3)問題轉化為f(x)max-f(x)min≤4,x∈[1,2],討論a的范圍,求出函數(shù)的單調區(qū)間,得到函數(shù)的最值的差,從而求出a的范圍即可.

解答 解:(1)若f(x)≥0對x∈R恒成立,即x2-ax+1≥0對x∈R恒成立,
∴△=a2-4≤0,解得,-2≤a≤2.
∴a的取值范圍[-2,2];
(2)f(x)=x2-ax+1,a∈(0,3),
對稱軸x=$\frac{a}{2}$>0,
①0<$\frac{a}{2}$<1即0<a<2時,f(x)在[1,2]遞增,
f(x)的最大值是f(2)=5-2a,
②1≤$\frac{a}{2}$<$\frac{3}{2}$即2≤a<3時,
f(x)在[1,$\frac{a}{2}$)遞減,在($\frac{a}{2}$,2]遞增,
f(x)的最大值是f(1)或f(2),
而$\frac{a}{2}$-1≤2-$\frac{a}{2}$,
∴f(x)的最大值是f(2)=5-2a,
綜上,f(x)的最大值是5-2a;
(3)任意x1,x2∈[1,2],使得|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,x∈[1,2],
f(x)=x2-ax+1,對稱軸x=$\frac{a}{2}$,
①a≤2,即x=$\frac{a}{2}$≤1時,
f(x)在[1,2]遞增,f(x)max-f(x)min=f(2)-f(1)=3-a≤4,
解得:-1≤a≤2;
②2<a<3即1<$\frac{a}{2}$<$\frac{3}{2}$時,
f(x)在[1,$\frac{a}{2}$)遞減,在($\frac{a}{2}$,2]遞增,
f(x)max-f(x)min=f(2)-f($\frac{a}{2}$)=$\frac{{a}^{2}}{4}$-2a+4≤4,
解得:0≤a≤8,即2<a<3符合題意;
③3≤a<4即$\frac{3}{2}$≤a<2時,
f(x)在[1,$\frac{a}{2}$)遞減,在($\frac{a}{2}$,2]遞增,
f(x)max-f(x)min=f(1)-f($\frac{a}{2}$)=$\frac{{a}^{2}}{4}$-a+1≤4,
解得:-2≤a≤6,即3≤a<4符合題意;
④a≥4,即$\frac{a}{2}$≥2時,
f(x)在[1,2]遞減,f(x)max-f(x)min=f(1)-f(2)=a-3≤4,
解得:4≤a≤7;
綜上:-1≤a≤7.

點評 本題考查了函數(shù)的單調性、最值問題,考查二次函數(shù)的性質以及分類討論思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=x2-|x|-6,則f(x)的零點個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知直三棱柱ABC-A1B1C1的側面ACC1A1是正方形,AC=BC,點O是側面ACC1A1的中心,∠ACB=$\frac{π}{2}$,M在棱BC上,且MC=2BM=2.
(1)證明BC⊥AC1
(2)求OM的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ   ①
sin(α-β)=sinαcosβ-cosαsinβ   ②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  ③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(Ⅰ)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:
cosA-cosB=2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.;
(Ⅱ)在△ABC中,求T=sinA+sinB+sinC+sin$\frac{π}{3}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知A(-1,0),B(1,0),圓C:x2-2kx+y2+2y-3k2+15=0.
(Ⅰ)若過B點至少能作一條直線與圓C相切,求k的取值范圍.
(Ⅱ)當k=$\frac{\sqrt{21}}{2}$時,圓C上存在兩點P1,P2滿足∠APiB=90°(i=1,2),求|P1P2|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow$.則|$\overrightarrow{a}$+$\overrightarrow$|的值為(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)f(x)=x2-2x+mlnx+1,其中m為常數(shù).
(1)若m≥$\frac{1}{2}$,證明:函數(shù)f(x)在定義域上是增函數(shù);
(2)若函數(shù)f(x)有唯一極值點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{lnx+k}{{e}^{x}}$(其中k∈R,e是自然對數(shù)的底數(shù)),f′(x)為f(x)導函數(shù).
(Ⅰ)若k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f′(1)=0,試證明:對任意x>0,f′(x)<$\frac{{e}^{-2}+1}{{x}^{2}+x}$恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若P(-2,-$\frac{π}{3}$)是極坐標系中的一點,則Q(2,$\frac{2π}{3}$)、R(2,$\frac{8π}{3}$)、M(-2,$\frac{5π}{3}$)、N(2,2kπ-$\frac{4π}{3}$)(k∈Z)四點中與P重合的點有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案