【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量
萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用
萬(wàn)元滿足
(其中
,
為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本
萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為
元
件.
(1)將該產(chǎn)品的利潤(rùn)
萬(wàn)元表示為促銷費(fèi)用
萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?
【答案】(1)
;
(2)當(dāng)
時(shí),促銷費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;當(dāng)
時(shí),促銷費(fèi)用投入
萬(wàn)元時(shí),該公司的利潤(rùn)最大.
【解析】
(1)根據(jù)產(chǎn)品的利潤(rùn)
銷售額
產(chǎn)品的成本建立函數(shù)關(guān)系;
(2)利用導(dǎo)數(shù)基本不等式可求出該函數(shù)的最值,注意等號(hào)成立的條件.
解:(1)由題意知,
,
將
代入化簡(jiǎn)得:
;
(2)
,
當(dāng)且僅當(dāng)
,即
時(shí),上式取等號(hào);
當(dāng)
時(shí),促銷費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;
,
,
時(shí),函數(shù)在
,
上單調(diào)遞增,
時(shí),函數(shù)有最大值.即促銷費(fèi)用投入
萬(wàn)元時(shí),該公司的利潤(rùn)最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月18日國(guó)際射聯(lián)步手槍世界杯總決賽在莆田市綜合體育館開(kāi)幕,這是國(guó)際射聯(lián)步手槍世界杯總決賽時(shí)隔10年再度走進(jìn)中國(guó).為了增強(qiáng)趣味性,并實(shí)時(shí)播報(bào)現(xiàn)場(chǎng)賽況,我校現(xiàn)場(chǎng)小記者李明和播報(bào)小記者王華設(shè)計(jì)了一套播報(bào)轉(zhuǎn)碼法,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實(shí)文)按字母分解,其中英文的
的26個(gè)字母(不論大小寫(xiě))依次對(duì)應(yīng)1,2,3,…,26這26個(gè)自然數(shù)通過(guò)變換公式:
,將明文轉(zhuǎn)換成密文,如
,即
變換成
,即
變換成
.若按上述規(guī)定,若王華收到的密文是
,那么原來(lái)的明文是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華民族優(yōu)秀傳統(tǒng)文化,樹(shù)立正確的價(jià)值導(dǎo)向,落實(shí)立德樹(shù)人根本任務(wù),某市組織30000名高中學(xué)生進(jìn)行古典詩(shī)詞知識(shí)測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:
![]()
(Ⅰ)規(guī)定成績(jī)不低于60分為及格,不低于85分為優(yōu)秀,試估計(jì)此次測(cè)試的及格率及優(yōu)秀率;
(Ⅱ)試估計(jì)此次測(cè)試學(xué)生成績(jī)的中位數(shù);
(Ⅲ)已知樣本中有
的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計(jì)參加本次測(cè)試30000名高中生中男生和女生的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線l的參數(shù)方程為
為參數(shù)
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求直線l的普通方程以及曲線C的參數(shù)方程;
(2)過(guò)曲線C上任意一點(diǎn)E作與直線l的夾角為
的直線,交l于點(diǎn)F,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購(gòu)的概率;
(2)從被抽取的年齡在[50,70]使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”近年來(lái)成為了百姓耳熟能詳?shù)臒衢T詞匯,對(duì)于旅游業(yè)來(lái)說(shuō),“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡(jiǎn)單范疇,賦予了旅游促進(jìn)跨區(qū)域融合的新理念. 而其帶來(lái)的設(shè)施互通、經(jīng)濟(jì)合作、人員往來(lái)、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來(lái)巨大的發(fā)展機(jī)遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)10天的游客數(shù),統(tǒng)計(jì)得到莖葉圖如下:
![]()
(1)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時(shí)期內(nèi)任取4天,記其中游客數(shù)超過(guò)130人的天數(shù)為
,求概率
;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
.
(1)求實(shí)數(shù)
的值,使得
為奇函數(shù);
(2)若關(guān)于
的方程
有兩個(gè)不同實(shí)數(shù)解,求
的取值范圍;
(3)若關(guān)于
的不等式
對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)
,
的坐標(biāo)分別為
,
,直線
和
相交于點(diǎn)
,且
和
的斜率之差是1.
(1)求點(diǎn)
的軌跡
的方程;
(2)過(guò)軌跡
上的點(diǎn)
,
,作圓
:
的兩條切線,分別交
軸于點(diǎn)
,
.當(dāng)
的面積最小時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知
中,
,
平面
,![]()
是
的中點(diǎn).
![]()
(Ⅰ)若
是
的中點(diǎn),求證:平面
平面
;
(Ⅱ)若
,求平面
與平面
所成的銳二面角的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com